首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1102篇
  免费   53篇
  国内免费   31篇
测绘学   35篇
大气科学   76篇
地球物理   276篇
地质学   577篇
海洋学   78篇
天文学   65篇
综合类   22篇
自然地理   57篇
  2023年   6篇
  2022年   44篇
  2021年   60篇
  2020年   37篇
  2019年   52篇
  2018年   96篇
  2017年   83篇
  2016年   113篇
  2015年   40篇
  2014年   83篇
  2013年   96篇
  2012年   58篇
  2011年   48篇
  2010年   36篇
  2009年   36篇
  2008年   27篇
  2007年   31篇
  2006年   28篇
  2005年   18篇
  2004年   15篇
  2003年   21篇
  2002年   13篇
  2001年   11篇
  2000年   17篇
  1999年   9篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   8篇
  1994年   5篇
  1993年   6篇
  1992年   5篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   7篇
  1982年   8篇
  1981年   6篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
  1968年   3篇
排序方式: 共有1186条查询结果,搜索用时 11 毫秒
81.
82.
Performing a comprehensive risk analysis is primordial to ensure a reliable and sustainable water supply. Though the general framework of risk analysis is well established, specific adaptation seems needed for systems such as water distribution networks (WDN). Understanding of vulnerabilities of WDN against deliberate contamination and consumers’ sensitivity against contaminated water use is very vital to inform decision-maker. This paper presents an innovative step-by-step methodology for developing comprehensive indicators to perform sensitivity, vulnerability and criticality analyses in case of absence of early warning system (EWS). The assessment and the aggregation of these indicators with specific fuzzy operators allow identifying the most critical points in a WDN. Intentional intrusion of contaminants at these points can potentially harm both the consumers as well as water infrastructure. The implementation of the developed methodology has been demonstrated through a case study of a French WDN unequipped with sensors.  相似文献   
83.
The main goal of this study is to develop an efficient approach for the assimilation of the hindcasted wave parameters in the Persian Gulf. Hence, the third generation SWAN model was employed for wave modeling forced by the 6-h ECMWF wind data with a resolution of 0.5°. In situ wave measurements at two stations were utilized to evaluate the assimilation approaches. It was found that since the model errors are not the same for wave height and period, adaptation of model parameter does not result in simultaneous and comprehensive improvement of them. Therefore, an approach based on the error prediction and updating of output variables was employed to modify wave height and period. In this approach, artificial neural networks (ANNs) were used to estimate the deviations between the simulated and measured wave parameters. The results showed that updating of output variables leads to significant improvement in a wide range of the predicted wave characteristics. It was revealed that the best input parameters for error prediction networks are mean wind speed, mean wind direction, wind duration, and the wave parameters. In addition, combination of the ANN estimated error with numerically modeled wave parameters leads to further improvement in the predicted wave parameters in contrast to direct estimation of the parameters by ANN.  相似文献   
84.
85.
The status report on metal pollution in tropical estuaries and coastal waters is important to understand potential environmental health hazards. Detailed baseline measurements were made on physicochemical parameters (pH, temperature, redox potential, electrical conductivity, salinity, dissolved oxygen, total dissolved solid), major ions (Na, Ca, Mg, K, HCO3, Cl, SO4 and NO3) and metals concentrations (27Al, 75As, 138Ba, 9Be, 111Cd, 59Co, 63Cu, 52Cr, 57Fe, 55Mn, 60Ni, 208Pb, 80Se, 66Zn) at estuaries and coastal waters along the Straits of Malacca. Principal component analysis (PCA) was employed to reveal potential pollution sources. Seven principal components were extracted with relation to pollution contribution from minerals-related parameters, natural and anthropogenic sources. The output from this study will generate a profound understanding on the metal pollution status and pollution risk of the estuaries and coastal system.  相似文献   
86.
Abstract

The Coupled Routing and Excess STorage model (CREST, jointly developed by the University of Oklahoma and NASA SERVIR) is a distributed hydrological model developed to simulate the spatial and temporal variation of land surface, and subsurface water fluxes and storages by cell-to-cell simulation. CREST's distinguishing characteristics include: (1) distributed rainfall–runoff generation and cell-to-cell routing; (2) coupled runoff generation and routing via three feedback mechanisms; and (3) representation of sub-grid cell variability of soil moisture storage capacity and sub-grid cell routing (via linear reservoirs). The coupling between the runoff generation and routing mechanisms allows detailed and realistic treatment of hydrological variables such as soil moisture. Furthermore, the representation of soil moisture variability and routing processes at the sub-grid scale enables the CREST model to be readily scalable to multi-scale modelling research. This paper presents the model development and demonstrates its applicability for a case study in the Nzoia basin located in Lake Victoria, Africa.

Citation Wang, J., Yang, H., Li, L., Gourley, J. J., Sadiq, I. K., Yilmaz, K. K., Adler, R. F., Policelli, F. S., Habib, S., Irwn, D., Limaye, A. S., Korme, T. &; Okello, L. (2011) The coupled routing and excess storage (CREST) distributed hydrological model. Hydrol. Sci. J. 56(1), 84–98.  相似文献   
87.
88.
Rapid urbanization and expansion of metropolitans in the developing world is pressing the need of tall structures with multiple basements. In several such projects, open land is available around excavation site and unsupported deep excavations by maintaining appropriate side slopes offer economical solution. In this research, subsoil stratigraphy of Lahore district was established to be comprising of a top clay stratum 1.5–8 m thick, followed by a sand layer. Considering subsoil data from several geotechnical investigation reports, the effect of four key parameters viz., cohesion of clay layer, friction angle of sand layer, thickness of clay layer at the top and slope inclination of underlying sand layer on safety factor of open excavations was studied. Six hundred twenty-five slope stability analyses were conducted by considering different geometries and soil properties. Based on the results of these analyses, a regression model was suggested to estimate safety factor of open excavations in similar stratigraphy which would be useful in feasibility studies and preliminary design of deep excavations. It was established that the clay layer cohesion was the most dominant contributor to safety factor.  相似文献   
89.
Mymensingh municipality lies in one of the most earthquake-prone areas of Bangladesh. The town was completely destroyed during the Great Indian Earthquake of 12 June 1897, for which the surface-wave magnitude was 8.1. In this study the 1897 Great Indian Earthquake was used as a scenario event for developing seismic microzonation maps for Mymensingh. For microzonation purposes SPT data from 87 boreholes were collected from different relevant organizations. To verify those data ten boreholes of depth up to 30 m were drilled. Intensity values obtained for different events were calibrated against attenuation laws to check applicability to the study area. Vibration characteristics at diverse points of the study area were estimated by employing the one-dimensional wave-propagation software SHAKE. SHAKE discretizes the soil profile into several layers and uses an iterative technique to represent the non-linear behavior of the soil by adjusting the material properties at each iteration step. The required input information includes depth, shear wave velocity, damping factor, and unit weight of each soil layer. The liquefaction resistance factor and the resulting liquefaction potential were estimated to quantify the severity of liquefaction. Quantification of secondary site effects and the weighting scheme for combining the various seismic hazards were heuristic, based on judgment and expert opinion.  相似文献   
90.
Abstract

The study of sediment load is important for its implications to the environment and water resources engineering. Four models were considered in the study of suspended sediment concentration prediction: artificial neural networks (ANNs), neuro-fuzzy model (NF), conjunction of wavelet analysis and neuro-fuzzy (WNF) model, and the conventional sediment rating curve (SRC) method. Using data from a US Geological Survey gauging station, the suspended sediment concentration predicted by the WNF model was in satisfactory agreement with the measured data. Also the proposed WNF model generated reasonable predictions for the extreme values. The cumulative suspended sediment load estimated by this model was much higher than that predicted by the other models, and is close to the observed data. However, in the current modelling, the ANN, NF and SRC models underestimated sediment load. The WNF model was successful in reproducing the hysteresis phenomenon, but the SRC method was not able to model this behaviour. In general, the results showed that the NF model performed better than the ANN and SRC models.

Citation Mirbagheri, S. A., Nourani, V., Rajaee, T. & Alikhani, A. (2010) Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers. Hydrol. Sci. J. 55(7), 1175–1189.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号