首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   7篇
  国内免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   10篇
地质学   26篇
海洋学   6篇
天文学   1篇
综合类   1篇
自然地理   7篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2002年   3篇
  2000年   3篇
  1997年   2篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1975年   4篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
51.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2 = 43.7–45.7 wt.per cent, A12O3 = 1.6O–8.21 wt. per cent, CaO = 0.70–8.12wt. per cent, alk = 0.10–0.90 wt. per cent and Mg/(Mg+Fe2+)= 0.94–0.85) have been investigated in the hypersolidusregion from 800? to 1250?C with variable activities of H2O,CO2, and H2. The vapor-saturated peridotite solidi are 50–200?Cbelow those previously published. The temperature of the beginningof melting of peridotite decreases markedly with decreasingMg/(Mg+SFe) of the starting material at constant CaO/Al2O3.Conversely, lowering CaO/Al2O3 reduces the temperature at constantMg/(Mg+Fe) of the starting material. Temperature differencesbetween the solidi up to 200?C are observed. All solidi displaya temperature minimum reflecting the appearance of garnet. Thisminimum shifts to lower pressure with decreasing Mg/(Mg + Fe)of the starting material. The temperature of the beginning ofmelting decreases isobarically as approximately a linear functionof the mol fraction of H2O in the vapor (XH2Ov). The data alsoshow that some CO2 may dissolve in silicate melts formed bypartial melting of peridotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or co-exist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aHjo conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. Itis suggested that komatiite in Precambrian terrane could formby direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of XH2Ov = 0.5–0.25 (XCO2v= 0.5–0.75). Such activities of H2O result in meltingat depths ranging between 125 and 175 km in the mantle. Thisrange is within the minimum depth generally accepted for theformation of kimberlite.  相似文献   
52.
Identifying the influence of neotectonics on the morphology of elevated passive margins is complicated in that major morpho‐structural patterns might plausibly be explained by processes related to late Mesozoic to early Cenozoic rifting and/or differential erosion induced by Cenozoic epeirogenic uplift. The proportional contribution of each process can vary from continent to continent, and potentially even within the same passive margin. In the passive margin setting of the southeast Australian highlands the documented occurrence of neotectonic deformation is rare, and accordingly its role in landscape evolution is difficult to establish. The results of investigations within the Lapstone Structural Complex, which forms the eastern range front of the Blue Mountains Plateau, provide evidence for two periods of Cenozoic neotectonic uplift in this part of the highlands. The first, demonstrated by seismic and structural evidence, is suggested to have occurred in the Paleogene, and is thus unrelated to Cretaceous rifting. The second period, demonstrated by evidence from the Kurrajong Fault (presented herein) suggests that uplift occurred in both the Mio‐Pliocene and the Middle Pleistocene. The cumulative Neogene and younger uplift of ~15 m determined for the Kurrajong Fault is less than 10% of the 130 m of total measured throw across the fault. The apparently minor contribution of neotectonism to the current elevation of the Blue Mountains Plateau supports a predominantly erosional exhumation origin for the topographic relief at the plateau's eastern edge. This finding contrasts with evidence from fault complexes associated with similar topographic relief elsewhere in the south‐eastern highlands, indicating that present‐day topography cannot be directly related to relief generated by Neogene and younger uplift, even from relatively closely‐spaced (< 150 km) structures within the same passive margin. These findings have implications for understanding the spatio‐temporal variability of post‐rift faulting in continental passive margin settings and the evolution of landscapes therein. © Commonwealth of Australia. Earth Surface Processes and Landforms © 2014 John Wiley & Sons, Ltd.  相似文献   
53.
Toxicity of 1,4-dichlorobenzene in sediments to juvenile polychaete worms   总被引:1,自引:0,他引:1  
Investigation of sediment contamination associated with a marine sewage outfall in Victoria (BC, Canada) found elevated concentrations of 1,4-dichlorobenzene (1,4-DCB). Juvenile polychaete worm (Neanthes) growth was significantly reduced at or near the outfall, roughly corresponding to elevated 1,4-DCB concentrations. There are few data on 1,4-DCB toxicity to marine organisms and no published literature on its toxicity to benthic marine organisms. To determine whether reduced polychaete growth (measured as dry weight) was due to 1,4-DCB exposure, a laboratory investigation was conducted. Uncontaminated marine sediment was spiked with 1,4-DCB and juvenile Neanthes were exposed in 20-d sublethal toxicity tests. There were no adverse effects on survival at any test concentration; mean survival was 80–100%. Statistically significant decreases in average dry weight only occurred at the highest 1,4-DCB concentration (19,900 μg/kg, dry weight); this represented a 1,4-DCB concentration more than 10 times higher than previously measured at the outfall (1710 μg/kg, dry weight). There were no adverse effects on survival or dry weight at the range of concentrations previously measured in sediments from the vicinity of the outfall.  相似文献   
54.
This raised delta structure is an ice-contact deltaic complex with a volume of c. 4.4.109 m3, deposited c . 9500 yr BP in a shallow wide 'fjord' during the retreat of the Scandinavian ice cap. The delta plain lies at an altitude of 200–223 m. It aggraded c . 20 m above the contemporaneous sea level during a regional marine regression. The braidplain palaeochannel characteristics indicate a peak meltwater discharge of 7–9 103 m3/s. Calculations based on a glacial ablation model indicate a mid-summer discharge of c . 5.5 103 m3/s. However, the fluvial topset of the delta has an erosive base whose altitude decreases upstream and indicates stream incision by more the 6 m below the contemporaneous sea level. The deep scour is ascribed to episodic floods over the relatively short delta plain, which exceeded direct ablation-associated discharges. The depositional time-span of the delta is assessed to have been 70 years, calculated from coastal gradient and shoreline displacement curves. The average sedimentation rate of the delta is thereby inferred to have been extremely high, c . 6. 107 m3/yr. The sedimentation is thought to reflect 'extreme' ice-margin conditions, where the sediment and water discharge was maximized by full-scale ablation, with simultaneous subglacial, englacial and supraglacial sediment and water supply. These conditions might further coincide with an abundant rainfall in the catchment area or the drainage of dammed waters, initiating episodic floods which eroded deep beneath sea level. As a whole, the study illustrates the hydrological conditions of proglacial sedimentation at the front of the rapidly retreating last Scandinavian ice cap.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号