首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   363篇
  免费   18篇
  国内免费   2篇
测绘学   4篇
大气科学   11篇
地球物理   128篇
地质学   153篇
海洋学   37篇
天文学   31篇
综合类   1篇
自然地理   18篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   7篇
  2019年   5篇
  2018年   18篇
  2017年   21篇
  2016年   18篇
  2015年   24篇
  2014年   22篇
  2013年   20篇
  2012年   23篇
  2011年   22篇
  2010年   26篇
  2009年   19篇
  2008年   36篇
  2007年   20篇
  2006年   4篇
  2005年   15篇
  2004年   9篇
  2003年   11篇
  2002年   7篇
  2001年   5篇
  2000年   11篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1976年   1篇
排序方式: 共有383条查询结果,搜索用时 0 毫秒
381.
Spatial data are usually described through a vector model in which geometries are represented by a set of coordinates embedded into an Euclidean space. The use of a finite representation, instead of the real numbers theoretically required, causes many robustness problems which are well known in the literature. Such problems are made even worse in a distributed context, where data is exchanged between different systems and several perturbations can be introduced in the data representation. In order to discuss the robustness of a spatial dataset, two implementation models have to be distinguished: the identity and the tolerance model. The robustness of a dataset in the identity model has been widely discussed in the literature and some algorithms of the Snap Rounding (SR) family can be successfully applied in such contexts. Conversely, this problem has been less explored in the tolerance model. The aim of this article is to propose an algorithm inspired by those of the SR family for establishing or restoring the robustness of a vector dataset in the tolerance model. The main ideas are to introduce an additional operation which spreads instead of snapping geometries, in order to preserve the original relation between them, and to use a tolerance region for such an operation instead of a single snapping location. Finally, some experiments on real‐world datasets are presented, confirming how the proposed algorithm can establish the robustness of a dataset.  相似文献   
382.
Bulk and slab geometry optimizations and calculations of the electrostatic potential at the surface of both pyrophyllite [Al2Si4O10(OH)2] and talc [Mg3Si4O10(OH)2] were performed at Hartree–Fock and DFT level. In both pyrophyllite and talc cases, a modest (001) surface relaxation was observed, and the surface preserves the structural features of the crystal: in the case of pyrophyllite the tetrahedral and octahedral sheets are strongly distorted with respect to the ideal hexagonal symmetry (and basal oxygen are located at different heights along the direction normal to the basal plane), whereas the structure of talc deviates slightly from the ideal hexagonal symmetry (almost co-planar basal oxygen). The calculated distortions are fully consistent with those experimentally observed. Although the potentials at the surface of pyrophyllite and talc are of the same order of magnitude, large topological differences were observed, which could possibly be ascribed to the differences between the surface structures of the two minerals. Negative values of the potential are located above the basal oxygen and at the center of the tetrahedral ring; above silicon the potential is always positive. The value of the potential minimum above the center of the tetrahedral ring of pyrophyllite is ?0.05 V (at 2 Å from the surface), whereas in the case of talc the minimum is ?0.01 V, at 2.7 Å. In the case of pyrophyllite the minimum of potential above the higher basal oxygen is located at 1.1 Å and it has a value of ?1.25 V, whereas above the lower oxygen the value of the potential at the minimum is ?0.2 V, at 1.25 Å; the talc exhibits a minimum of ?0.75 V at 1.2 Å, above the basal oxygen.  相似文献   
383.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号