首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   10篇
  国内免费   1篇
测绘学   3篇
大气科学   24篇
地球物理   48篇
地质学   77篇
海洋学   12篇
天文学   27篇
自然地理   4篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   8篇
  2018年   3篇
  2017年   6篇
  2016年   13篇
  2015年   7篇
  2014年   14篇
  2013年   12篇
  2012年   13篇
  2011年   10篇
  2010年   14篇
  2009年   10篇
  2008年   8篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   7篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有195条查询结果,搜索用时 46 毫秒
141.
The effect of fluid flow on mixed-volatile reactions in metamorphic rocks is described by an expression derived from the standard equation for coupled chemical-reaction and fluid-flow in porous media. If local mineral-fluid equilibrium is assumed, the expression quantitatively relates the time-integrated flux at any point in a flow-system to the progress of devolatilization reactions and the temperature- and pressure-gradients along the direction of flow. Model calculations indicate that rocks are generally devolatilized by fluids flowing uptemperature and/or down-pressure. Flow down-temperature typically results in hydration and carbonation of rocks. Time-integrated fluid fluxes implied by visible amounts of mineral products of devolatilization reactions are on the order of 5·102–5·104 mol/cm2. The model was applied to regionally metamorphosed impure carbonate rocks from south-central Maine, USA, to obtain estimates of fluid flux, flow-direction, and in-situ metamorphic-rock permeability from petrologic data. Calculated time-integrated fluxes are 104–106 cm3/cm2 at 400°–450° C, 3,500 bars. Fluid flowed from regions of low temperature to regions of high temperature at the peak of the metamorphic event. Using Darcy's Law and estimates for the duration of metamorphism and hydrologic head, calculated fluxes are 0.1–20·10-4 m/year and minimum permeabilities are 10-10–10-6 Darcy. The range of inferred permeability is in good agreement with published laboratory measurements of the permeability of metamorphic rocks.  相似文献   
142.
Samples of granitic rock from south-central Maine contain primary igneous minerals altered by hydrothermal fluids. The reaction mechanisms (by which the over-all mineralogical change during the alteration was accomplished) involve several different mineral-fluid reactions at different reaction sites in the rock. The reactions involve both molecular and charged species in solution. The different reaction sites correspond to alteration of different primary igneous minerals. Biotite is partially converted to chlorite+sphene; microcline to muscovite; plagioclase to various combinations of muscovite, epidote, and calcite. The different reaction sites are linked by exchange of ions: some reaction sites produce ions consumed at other sites and vice versa. Physical conditions during the hydrothermal event are estimated from mineralogical and thermochemical data: P = 3,500 (±300) bars; T =425 ° (± 25 °)C. The fluid was characterized by X CO 2 = 0–0.13; ln([K+]/[H+ ]) = 10.0; ln([Ca2+]/[H+]2)=9.1; ln([Na+]/[H+]) = 10.5; Fe/(Fe+Mg) = 0.95. Amounts of secondary minerals in altered rock, when compared to the inferred mineral reactions that formed them, indicate that small but significant amounts (0.01–0.3mol/ 1,000cm3 altered rock) of CO2, H2O, H+, and K+ were added to the granites by fluids during the alteration, as well as lesser amounts (< 0.01–0.03 mol/1,000cm3 altered rock) of Mg2+, Fe2+, Fe3+, Mn2+, Na+, and Ti4+. The sole element leached from the granitic rocks during alteration was Ca in amounts 0.1–0.3 mol/1,000 cm3 rock. By estimating the composition of the hydrothermal fluids before and after reaction with the granites and by measuring the amount of material added to or subtracted from the granites during the alteration, the amount and volume of hydrothermal fluid involved can be calculated. Two independent calculations require minimum volumes in the range 100–1,000 cm3 fluid/1,000cm3 altered rock to participate in the hydrothermal event.  相似文献   
143.
The flow pattern of reactive metamorphic fluid through six outcrops of micaceous, carbonate-bearing sandstones from the Vassalboro Formation was determined by calculating and mapping fluid-rock ratios for numerous samples within each outcrop. The ratio of maximum to minimum measured fluid/rock varied by factors of only 1.3-22.9 in each outcrop. Fluid flow was pervasive at metamorphic grades ranging from the biotite through the sillimanite zones. Average fluid-rock ratio for the outcrops increases with increasing grade of metamorphism from 0.4 in the biotite zone to 1.4 in the sillimanite zone.The flow pattern of reactive fluid through impure sandstones of the Vassalboro Formation was different at low and medium grades from fluid flow through the limestone member of the adjacent Waterville Formation. In the biotite and garnet zones, fluid flow through the Waterville Formation was channelized with channelways corresponding to individual lithologic layers that acted as metamorphic aquifers. Fluid-rock ratios recorded by the aquifers are greater than those recorded by the intervening beds by factors of up to 50–60. At the highest grades of metamorphism (sillimanite zone), however, flow through the Waterville Formation was as pervasive as through the Vassalboro Formation.The Waterville and Vassalboro Formations experienced the same metamorphic event. The difference in pattern of fluid flow through the two formations therefore reflects the important control that lithology exerts on the permeability of rocks during metamorphism. Micaceous, carbonate-bearing sandstones evidently were more permeable than argillaceous carbonate rocks. The greater permeability of the sandstones may result from a greater concentration of grain boundaries between unlike minerals in the rocks.  相似文献   
144.
145.
The models recognize that ZrSiO4, ZrTiO4, and TiSiO4, but not ZrO2 or TiO2, are independently variable phase components in zircon. Accordingly, the equilibrium controlling the Zr content of rutile coexisting with zircon is ZrSiO4 = ZrO2 (in rutile) + SiO2. The equilibrium controlling the Ti content of zircon is either ZrSiO4 + TiO2 = ZrTiO4 + SiO2 or TiO2 + SiO2 = TiSiO4, depending whether Ti substitutes for Si or Zr. The Zr content of rutile thus depends on the activity of SiO2 as well as T, and the Ti content of zircon depends on and as well as T. New and published experimental data confirm the predicted increase in the Zr content of rutile with decreasing and unequivocally demonstrate that the Ti content of zircon increases with decreasing . The substitution of Ti in zircon therefore is primarily for Si. Assuming a constant effect of P, unit and that and are proportional to ppm Zr in rutile and ppm Ti in zircon, [log(ppm Zr-in-rutile) + log] = A1 + B1/T(K) and [log(ppm Ti-in-zircon) + log − log] = A2 + B2/T, where the A and B are constants. The constants were derived from published and new data from experiments with buffered by either quartz or zircon + zirconia, from experiments with defined by the Zr content of rutile, and from well-characterized natural samples. Results are A1 = 7.420 ± 0.105; B1 = −4,530 ± 111; A2 = 5.711 ± 0.072; B2 = −4,800 ± 86 with activity referenced to α-quartz and rutile at P and T of interest. The zircon thermometer may now be applied to rocks without quartz and/or rutile, and the rutile thermometer applied to rocks without quartz, provided that and are estimated. Maximum uncertainties introduced to zircon and rutile thermometry by unconstrained and can be quantitatively assessed and are ≈60 to 70°C at 750°C. A preliminary assessment of the dependence of the two thermometers on P predicts that an uncertainty of ±1 GPa introduces an additional uncertainty at 750°C of ≈50°C for the Ti-in-zircon thermometer and of ≈70 to 80°C for the Zr-in-rutile thermometer.  相似文献   
146.

The Callovo Oxfordian clay-rock (COx) is studied in France for the disposal of radioactive waste, because of its extremely low permeability. This host rock is governed by a hydromechanical coupling of high complexity. This paper presents an experimental study into the mechanisms of water uptake in small, unconfined, prismatic specimens of COx, motivated by the comprehension of cracking observed during concrete/COx interface sample preparation. Water uptake is monitored using both X-ray tomography and neutron radiography, the combination of these imaging techniques allowing material deformation and water arrival to be quantified, respectively. Given the speed of water entry and crack propagation, relatively fast imaging is required: 5-min X-ray tomographies and 10-s neutron radiographs are used. In this study, pairs of similar COx samples from the same core are tested separately with each imaging technique. Two different orientations with respect to the core are also investigated. Analysis of the resulting images yields with micro- and macro-scale insights into hydromechanical mechanisms to be obtained. This allows the cracking to be interpreted as a rapid breakdown in capillary suction (supposed large both to drying and rebound from in situ stress state) due to water arrival, which in turn causes a loss of effective stress, allowing cracks to propagate and deliver water further into the material.

  相似文献   
147.
148.
149.
150.
This numerical modeling study (i) assesses the influence of the sediment erosion process on the sediment dynamics and subsequent morphological changes of a mixed-sediment environment, the macrotidal Seine estuary, when non-cohesive particles are dominant within bed mixtures (non-cohesive regime), and (ii) investigates respective contributions of bedload and suspended load in these dynamics. A three dimensional (3D) process-based morphodynamic model was set up and run under realistic forcings (including tide, waves, wind, and river discharge) during a 1-year period. Applying erosion homogeneously to bed sediment in the non-cohesive regime, i.e., average erosion parameters in the erosion law (especially the erodibility parameter, E0), leads to higher resuspension of fine sediment due to the presence of coarser fractions within mixtures, compared to the case of an independent treatment of erosion for each sediment class. This results in more pronounced horizontal sediment flux (two-fold increase for sand, +30% for mud) and erosion/deposition patterns (up to a two-fold increase in erosion over shoals, generally associated with some coarsening of bed sediment). Compared to observed bathymetric changes, more relevant erosion/deposition patterns are derived from the model when independent resuspension fluxes are considered in the non-cohesive regime. These results suggest that this kind of approach may be more relevant when local grain-size distributions become heterogeneous and multimodal for non-cohesive particles. Bedload transport appears to be a non-dominant but significant contributor to the sediment dynamics of the Seine Estuary mouth. The residual bedload flux represents, on average, between 17 and 38% of the suspended sand flux, its contribution generally increasing when bed sediment becomes coarser (can become dominant at specific locations). The average orientation of residual fluxes and erosion/deposition patterns caused by bedload generally follow those resulting from suspended sediment dynamics. Sediment mass budgets cumulated over the simulated year reveal a relative contribution of bedload to total mass budgets around 25% over large erosion areas of shoals, which can even become higher in sedimentation zones. However, bedload-induced dynamics can locally differ from the dynamics related to suspended load, resulting in specific residual transport, erosion/deposition patterns, and changes in seabed nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号