Hydrothermal processing on planetesimals in the early solar system produced new mineral phases, including those generated by the transformation of anhydrous silicates into their hydrated counterparts. Carbonaceous chondrites represent tangible remnants of such alteration products. Lithium isotopes are known to be responsive to aqueous alteration, yet previously recognized variability within whole rock samples from the same meteorite appears to complicate the use of these isotopes as indicators of processing by water. We demonstrate a new way to use lithium isotopes that reflects aqueous alteration in carbonaceous chondrites. Temperature appears to exert a control on the production of acetic acid‐soluble phases, such as carbonates and poorly crystalline Fe‐oxyhydroxides. Temperature and degree of water‐rock interaction determines the amount of lithium isotope fractionation expressed as the difference between whole rock and acetic acid‐leachable fractions. Using these features, the type 1 chondrite Orgueil (δ7Li(whole rock) = 4.3‰; Δ7Li(acetic‐whole) = 1.2‰) can be distinguished from the type 2 chondrites Murchison (δ7Li(whole rock) = 3.8; Δ7Li(acetic‐whole) = 8.8‰) and carbonate‐poor Tagish Lake (δ7Li(whole rock) = 4.3; Δ7Li(acetic‐whole) = 9.4‰). This initial study suggests that lithium isotopes have the potential to reveal the role of liquid water in the early solar system. 相似文献
The effect of fluid flow on mixed-volatile reactions in metamorphic rocks is described by an expression derived from the standard equation for coupled chemical-reaction and fluid-flow in porous media. If local mineral-fluid equilibrium is assumed, the expression quantitatively relates the time-integrated flux at any point in a flow-system to the progress of devolatilization reactions and the temperature- and pressure-gradients along the direction of flow. Model calculations indicate that rocks are generally devolatilized by fluids flowing uptemperature and/or down-pressure. Flow down-temperature typically results in hydration and carbonation of rocks. Time-integrated fluid fluxes implied by visible amounts of mineral products of devolatilization reactions are on the order of 5·102–5·104 mol/cm2. The model was applied to regionally metamorphosed impure carbonate rocks from south-central Maine, USA, to obtain estimates of fluid flux, flow-direction, and in-situ metamorphic-rock permeability from petrologic data. Calculated time-integrated fluxes are 104–106 cm3/cm2 at 400°–450° C, 3,500 bars. Fluid flowed from regions of low temperature to regions of high temperature at the peak of the metamorphic event. Using Darcy's Law and estimates for the duration of metamorphism and hydrologic head, calculated fluxes are 0.1–20·10-4 m/year and minimum permeabilities are 10-10–10-6 Darcy. The range of inferred permeability is in good agreement with published laboratory measurements of the permeability of metamorphic rocks. 相似文献
Frequently preserved in archaeological and palaeontological sites, the tiny size of small-mammal remains favours percolations into underlying layers along stratigraphic sequences. This is one of the various post-depositional processes that may affect the integrity of the original deposits and therefore the subsequent scientific interpretations. Recent developments in sample preparation offer the possibility of detecting intrusive episodes through the absolute dating of minute amounts of bone (down to 10 mg), meaning that isolated elements (such as mandibles in this case) are sufficient to obtain reliable radiocarbon dates if collagen is moderately to well preserved. The radiocarbon dates obtained here for small-mammal bones (recovered from pre-Bølling to recent deposits) and their comparison with previous dates obtained from other sources (large-mammal bones, charcoal, botanical samples, etc.), with different protocols and instruments, illustrate the potential of small-mammal dating to reveal (and eventually contribute a solution to) stratigraphical issues in different archaeological contexts. 相似文献
The flow pattern of reactive metamorphic fluid through six outcrops of micaceous, carbonate-bearing sandstones from the Vassalboro Formation was determined by calculating and mapping fluid-rock ratios for numerous samples within each outcrop. The ratio of maximum to minimum measured fluid/rock varied by factors of only 1.3-22.9 in each outcrop. Fluid flow was pervasive at metamorphic grades ranging from the biotite through the sillimanite zones. Average fluid-rock ratio for the outcrops increases with increasing grade of metamorphism from 0.4 in the biotite zone to 1.4 in the sillimanite zone.The flow pattern of reactive fluid through impure sandstones of the Vassalboro Formation was different at low and medium grades from fluid flow through the limestone member of the adjacent Waterville Formation. In the biotite and garnet zones, fluid flow through the Waterville Formation was channelized with channelways corresponding to individual lithologic layers that acted as metamorphic aquifers. Fluid-rock ratios recorded by the aquifers are greater than those recorded by the intervening beds by factors of up to 50–60. At the highest grades of metamorphism (sillimanite zone), however, flow through the Waterville Formation was as pervasive as through the Vassalboro Formation.The Waterville and Vassalboro Formations experienced the same metamorphic event. The difference in pattern of fluid flow through the two formations therefore reflects the important control that lithology exerts on the permeability of rocks during metamorphism. Micaceous, carbonate-bearing sandstones evidently were more permeable than argillaceous carbonate rocks. The greater permeability of the sandstones may result from a greater concentration of grain boundaries between unlike minerals in the rocks. 相似文献
Recent studies suggested that tropical cyclones (TCs) contribute significantly to the meridional oceanic heat transport by injecting heat into the subsurface through mixing. Here, we estimate the long-term oceanic impact of TCs by inserting realistic wind vortices along observed TCs tracks in a 1/2° resolution ocean general circulation model over the 1978–2007 period. Warming of TCs’ cold wakes results in a positive heat flux into the ocean (oceanic heat uptake; OHU) of ~480 TW, consistent with most recent estimates. However, ~2/5 of this OHU only compensates the heat extraction by the TCs winds during their passage. Another ~2/5 of this OHU is injected in the seasonal thermocline and hence released back to the atmosphere during the following winter. Because of zonal compensations and equatorward transport, only one-tenth of the OHU is actually exported poleward (46 TW), resulting in a marginal maximum contribution of TCs to the poleward ocean heat transport. Other usually neglected TC-related processes however impact the ocean mean state. The residual Ekman pumping associated with TCs results in a sea-level drop (rise) in the core (northern and southern flanks) of TC-basins that expand westward into the whole basin as a result of planetary wave propagation. More importantly, TC-induced mixing and air-sea fluxes cool the surface in TC-basins during summer, while the re-emergence of subsurface warm anomalies warms it during winter. This leads to a ~10 % reduction of the sea surface temperature seasonal cycle within TCs basins, which may impact the climate system. 相似文献
This article examines the shoreline evolution and human occupation in the vicinity of the important archeological site of Amarynthos (Euboea Island, Greece) over the last six millennia. Archeological evidence indicates a continuous occupation of the site from the Bronze Age to the Roman period and the site is well-known, thanks to the existence of a sanctuary dedicated to the goddess Artemis. Based on the study of four boreholes, a paleogeographic reconstruction of the coastal landscape is proposed. Facies were determined based on mollusc identification, and sedimentology based on grain-size measurements (hand sieving for the fraction above 2?mm and LASER technique for particles below 2?mm) and loss-on-ignition. In addition, a series of 12 AMS radiocarbon dates define a reliable chronostratigraphy. Results suggest the presence of a fully marine environment from the early Holocene to ca. 2600–2400?cal. BC, which developed into a brackish environment from ca. 2600–2400?cal. BC to ca. 750?cal. BC due to the deltaic progradation of the nearby stream (Sarandapotamos River). From ca. 750?cal. BC onward, coastal swamps prevailed in the study area. Human-environmental interaction is discussed and particular attention is paid to the paleolandscape configuration of Amarynthos. 相似文献
The Callovo Oxfordian clay-rock (COx) is studied in France for the disposal of radioactive waste, because of its extremely low permeability. This host rock is governed by a hydromechanical coupling of high complexity. This paper presents an experimental study into the mechanisms of water uptake in small, unconfined, prismatic specimens of COx, motivated by the comprehension of cracking observed during concrete/COx interface sample preparation. Water uptake is monitored using both X-ray tomography and neutron radiography, the combination of these imaging techniques allowing material deformation and water arrival to be quantified, respectively. Given the speed of water entry and crack propagation, relatively fast imaging is required: 5-min X-ray tomographies and 10-s neutron radiographs are used. In this study, pairs of similar COx samples from the same core are tested separately with each imaging technique. Two different orientations with respect to the core are also investigated. Analysis of the resulting images yields with micro- and macro-scale insights into hydromechanical mechanisms to be obtained. This allows the cracking to be interpreted as a rapid breakdown in capillary suction (supposed large both to drying and rebound from in situ stress state) due to water arrival, which in turn causes a loss of effective stress, allowing cracks to propagate and deliver water further into the material.
In a regional metamorphic terrain where six isograds have been mapped based on mineral reactions that are observed in metacarbonate rocks, the P-T conditions and fugacities of CO2 and H2O during metamorphism were quantified by calculations involving actual mineral compositions and experimental data. Pressure during metamorphism was near 3,500 bars. Metamorphic temperatures ranged from 380° C (biotite-chlorite isograd) to 520° C (diopside isograd). \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{CO}}_{\text{2}} }\) / \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) in general is higher in metacarbonate rocks below the zoisite isograd than in those above the zoisite isograd. Calculated \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) are consistent with carbonate rocks above the zoisite isograd having equilibrated during metamorphism with a bulk supercritical fluid in which \(P_{{\text{CO}}_{\text{2}} }\) + \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) = Ptotal. Calculations indicate that below the zoisite isograd, however, \(P_{{\text{CO}}_{\text{2}} }\) + \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) was less than Ptotal, and that this condition is not due to the presence of significant amounts of species other than CO2 and H2O in the system C-O-H-S. Calculated \(P_{{\text{CO}}_{\text{2}} }\) /( \(P_{{\text{CO}}_{\text{2}} }\) + \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) ) is low (0.06–0.32) above the zoisite isograd. The differences in conditions above and below the zoisite isograd may indicate that the formation of zoisite records the introduction of a bulk supercritical H2O-rich fluid into the metacarbonates. The results of the study indicate that \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) are constant on a thin section scale, but that gradients in \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) existed during metamorphism on both outcrop and regional scales. 相似文献
With its exceptionally steep topography, wet climate, and active faulting, landslides can be expected to occur in the Rwenzori Mountains. Whether or not this region is prone to landsliding and more generally whether global landslide inventories and hazard assessments are accurate in data-poor regions such as the East African highlands are thus far unclear. In order to address these questions, a first landslide inventory based on archive information is built for the Rwenzori Mountains. In total, 48 landslide and flash flood events, or combinations of these, are found. They caused 56 fatalities and considerable damage to road infrastructure, buildings, and cropland, and rendered over 14,000 persons homeless. These numbers indicate that the Rwenzori Mountains are landslide-prone and that the impact of these events is significant. Although not based on field investigations but on archive data from media reports and laymen accounts, our approach provides a useful complement to global inventories overlooking this region and increases our understanding of the phenomenon in the Rwenzori Mountains. Considering the severe impacts of landslides, the population growth and related anthropogenic interventions, and the likelihood of more intense rainfall conditions, there is an urgent need to invest in research on disaster risk reduction strategies in this region and other similar highland areas of Africa. 相似文献
This study presents a detailed analysis of the seismic records of a strong explosion that occurred on 21 September 2001 at a chemical complex located south of Toulouse, France, and provoked important damages. The explosion, which is equivalent to a 3.4 magnitude earthquake, has been recorded at most of the stations of the National Seismological Network, as well as at a station under test at the ‘Observatoire Midi-Pyrénées’, 4.2 km away from the epicentre. The main seismic phases are interpreted using the known crustal structures, and a modelling with synthetic seismograms is performed. To cite this article: A. Souriau et al., C. R. Geoscience 334 (2002) 155–161.相似文献