首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   10篇
  国内免费   1篇
测绘学   3篇
大气科学   24篇
地球物理   47篇
地质学   77篇
海洋学   12篇
天文学   27篇
自然地理   4篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   8篇
  2018年   3篇
  2017年   6篇
  2016年   13篇
  2015年   7篇
  2014年   14篇
  2013年   12篇
  2012年   13篇
  2011年   10篇
  2010年   14篇
  2009年   10篇
  2008年   8篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   7篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有194条查询结果,搜索用时 171 毫秒
101.
Abstract— A database of magnetic susceptibility (χ) measurements on different non‐ordinary chondrites (C, E, R, and ungrouped) populations is presented and compared to our previous similar work on ordinary chondrites. It provides an exhaustive study of the amount of iron‐nickel magnetic phases (essentially metal and magnetite) in these meteorites. In contrast with all the other classes, CM and CV show a wide range of magnetic mineral content, with a two orders of magnitude variation of χ. Whether this is due to primary parent body differences, metamorphism or alteration, remains unclear. C3–4 and C2 yield similar χ values to the ones shown by CK and CM, respectively. By order of increasing χ, the classes with well‐grouped χ are: R << CO < CK ≈ CI < Kak < CR < E ≈ CH < CB. Based on magnetism, EH and EL classes have indistinguishable metal content. Outliers that we suggest may need to have their classifications reconsidered are Acfer 202 (CO), Elephant Moraine (EET) 96026 (C4–5), Meteorite Hills (MET) 01149, and Northwest Africa (NWA) 521 (CK), Asuka (A)‐88198, LaPaz Icefield (LAP) 031156, and Sahara 98248 (R). χ values can also be used to define affinities of ungrouped chondrites, and propose pairing, particularly in the case of CM and CV meteorites.  相似文献   
102.
As in the observed record, the termination of El Niño in the coupled IPCC-AR4 climate models involves meridional processes tied to the seasonal cycle. These meridional processes both precondition the termination of El Niño events in general and lead to a peculiar termination of extreme El Niño events (such as those of 1982–83 and 1997–98), in which the eastern equatorial Pacific warm sea surface temperature anomalies (SSTA) persist well into boreal spring/early-summer. The mechanisms controlling the peculiar termination of extreme El Niño events, which involves to the development of an equatorially centred intertropical convergence zone, are consistent across the four models that exhibit extreme El Niños and observational record, suggesting that this peculiar termination represents a general feature of extreme El Niños. Further, due to their unusual termination, extreme El Niños exhibit an apparent eastward propagation of their SSTA, which can strongly influence estimates of the apparent propagation of ENSO over multi-decadal periods. Interpreting these propagation changes as evidence of changes in the underlying dynamical feedbacks behind El Niño could therefore be misleading, given the strong influence of a single extreme event.  相似文献   
103.
This paper evaluates the performances of four cyclogenesis indices against observed tropical cyclone genesis on a global scale over the period 1979–2001. These indices are: the Genesis Potential Index; the Yearly Genesis Parameter; the Modified Yearly Convective Genesis Potential Index; and the Tippett et al. Index (J Clim, 2011), hereafter referred to as TCS. Choosing ERA40, NCEP2, NCEP or JRA25 reanalysis to calculate these indices can yield regional differences but overall does not change the main conclusions arising from this study. By contrast, differences between indices are large and vary depending on the regions and on the timescales considered. All indices except the TCS show an equatorward bias in mean cyclogenesis, especially in the northern hemisphere where this bias can reach 5°. Mean simulated genesis numbers for all indices exhibit large regional discrepancies, which can commonly reach up to ±50%. For the seasonal timescales on which the indices are historically fitted, performances also vary widely in terms of amplitude although in general they all reproduce the cyclogenesis seasonality adequately. At the seasonal scale, the TCS seems to be the best fitted index overall. The most striking feature at interannual scales is the inability of all indices to reproduce the observed cyclogenesis amplitude. The indices also lack the ability to reproduce the general interannual phase variability, but they do, however, acceptably reproduce the phase variability linked to El Ni?o/Southern Oscillation (ENSO)—a major driver of tropical cyclones interannual variations. In terms of cyclogenesis mechanisms that can be inferred from the analysis of the index terms, there are wide variations from one index to another at seasonal and interannual timescales and caution is advised when using these terms from one index only. They do, however, show a very good coherence at ENSO scale thus inspiring confidence in the mechanism interpretations that can be obtained by the use of any index. Finally, part of the gap between the observed and simulated cyclogenesis amplitudes may be attributable to stochastic processes, which cannot be inferred from environmental indices that only represent a potential for cyclogenesis.  相似文献   
104.
105.
 Siliceous dolomites and limestones contain abundant retrograde minerals produced by hydration-carbonation reactions as the aureole cooled. Marbles that contained periclase at the peak of metamorphism bear secondary brucite, dolomite, and serpentine; forsterite-dolomite marbles have retrograde tremolite and serpentine; wollastonite limestones contain secondary calcite and quartz; and wollastonite-free limestones have retrograde tremolite. Secondary tremolite never appears in marbles where brucite has replaced periclase or in wollastonite-bearing limestones. A model for infiltration of siliceous carbonates by CO2-H2O fluid that assumes (a) vertical upwardly-directed flow, (b) fluid flux proportional to cooling rate, and (c) flow and reaction under conditions of local equilibrium between peak temperatures and ≈400 °C, reproduces the modes of altered carbonate rocks, observed reaction textures, and the incompatibility between tremolite and brucite and between tremolite and wollastonite. Except for samples from a dolomite xenolith, retrograde time-integrated flux recorded by reaction progress is on the order of 1000 mol fluid/cm2 rock. Local focusing of flow near the contact is indicated by samples from the xenolith that record values an order of magnitude greater. Formation of periclase, forsterite, and wollastonite at the peak of metamorphism also required infiltration with prograde time-integrated flux approximately 100–1000 mol/cm2. The comparatively small values of prograde and retrograde time-integrated flux are consistent with lack of stable isotope alteration of the carbonates and with the success of conductive thermal models in reproducing peak metamorphic temperatures recorded by mineral equilibria. Although isobaric univariant assemblages are ubiquitous in the carbonates, most formed during retrograde metamorphism. Isobaric univariant assemblages observed in metacarbonates from contact aureoles may not record physical conditions at the peak of metamorphism as is commonly assumed. Received: 19 September 1995 / Accepted: 14 March 1996  相似文献   
106.
The cation exchange reaction Fe3Al2Si3O12 +KMg3AlSi3O10(OH)2 = Mg3Al2Si3O12+KFe3-AlSi3 O10(OH)2 has been investigated by determining the partitioning of Fe and Mg between synthetic garnet, (Fe, Mg)3Al2Si3O12, and synthetic biotite, K(Fe, Mg)3AlSi3O10(OH)2. Experimental results at 2.07 kbar and 550 °–800 ° C are consistent with In [(Mg/Fe) garnet/(Mg/Fe) biotite] = -2109/T(°K) +0.782. The preferred estimates for ¯H and ¯S of the exchange reaction are 12,454 cal and 4.662 e.u., respectively. Mixtures of garnet and biotite in which the ratio garnet/biotite=49/1 were used in the cation exchange experiments. Consequently the composition of garnet-biotite pairs could approach equilibrium values in the experiments with minimal change in garnet composition (few tenths of a mole percent). Equilibrium was demonstrated at each temperature by reversal of the exchange reaction. Numerical analysis of the experimental data yields a geothermometer for rocks containing biotite and garnet that are close to binary Fe-Mg compounds.  相似文献   
107.
We analyze the effects of flat and bumpy top, fractional and internally inhomogeneous cloud layers on large area-averaged thermal radiative fluxes. Inhomogeneous clouds are generated by a new stochastic model: the tree-driven mass accumulation process (tdMAP). This model is able to provide stratocumulus and cumulus cloud fields with properties close to those observed in real clouds. A sensitivity study of cloud parameters is done by analyzing differences between 3D fluxes simulated by the spherical harmonic discrete ordinate method and three “standard” models likely to be used in general circulation models: plane-parallel homogeneous cloud model (PPH), PPH with fractional cloud coverage model (FCPPH) and independent pixel approximation model (IPA). We show that thermal fluxes are strong functions of fractional cloud coverage, mean optical depth, mean geometrical thickness and cloud base altitude. Fluctuations of “in-cloud” horizontal variability in optical depth and cloud-top bumps have negligible effects in the whole. We also showed that PPH, FCPPH and IPA models are not suitable to compute thermal fluxes of flat top fractional inhomogeneous cloud layer, except for completely overcast cloud. This implies that horizontal transport of photon at thermal wavelengths is important when cloudy cells are separated by optically thin regions.  相似文献   
108.
The study of sedimentary facies in the quarry of Dompcevrin (Middle Oxfordian) located northwestward of St-Mihiel (Meuse department) provides evidences of high-energy depositional conditions. The occurrence of beaches associated with hurricane coral breccias containing megaclasts is characteristic of platform edge environments. The open sea was located northeastward, in the direction of Germany, as it is indicated by the direction of progradation of beaches. It is concluded that the Oxfordian carbonate platform of Lorraine was opened to the northeast toward the Germanic Sea during the Middle Oxfordian. To cite this article: C. Carpentier et al., C. R. Geoscience 336 (2004).  相似文献   
109.
Periclase formed in steeply dipping marbles from the Beinn an Dubhaich aureole, Scotland, and the Silver Star aureole, Montana, by the reaction dolomite = periclase + calcite + CO2. Equilibrium between rock and fluids with X CO 2 < 1 requires that reaction was infiltration-driven. Brucite pseudomorphs after periclase occur in the Beinn an Dubhaich aureole either as bed-by-bed replacement of dolomite or in a lens along the contact between dolomite and a pre-metamorphic dike. Transport theory predicts that infiltration drove both periclase reaction and 18O-depletion fronts which moved at significantly different velocities along the flow path. The distributions of brucite and 18O-depleted rocks are identical in surface exposures, thus indicating upward flow. Time-integrated flux (q) was <500 mol/cm2 and the fluid source was magmatic. Because periclase and its hydrated equivalent brucite are unaltered to dolomite by retrograde reactions, the exposure of brucite marbles accurately images the flow paths of peak metamorphic fluids. In the Silver Star aureole brucite pseudomorphs after periclase exclusively occur in tabular bodies that are beds with elevated Mg/Ca. The spatial pattern of 18O-depletion requires upward vertical fluid flow. Estimated prograde q ≈ 103–104 mol/cm2 and the fluid source was magmatic. Low Mg/Ca, 18O-depleted, brucite-free rocks pose a dilemma because the periclase reaction front should have traveled ≈18 times further through them than the isotope alteration front. The dilemma is resolved by reaction textures that indicate periclase and brucite were destroyed in low Mg/Ca rocks by infiltration-driven retrograde carbonation reactions. Values of retrograde q were ≈103–104 mol/cm2. Brucite (after periclase) was preserved only in high Mg/Ca layers where periclase developed in greater abundance. The geometry of brucite marbles at Silver Star thus reflects the location of high Mg/Ca beds rather than the geometry of fluid flow. Retrograde reactions must be considered before the mineralogical record of prograde fluid flow can correctly be interpreted. In both aureoles fluid flow, mineral reaction, and isotope depletion were structurally controlled by bedding and lithologic contacts. Received: 30 July 1996 / Accepted: 21 March 1997  相似文献   
110.
Taking account of the Cˉ1/Iˉ1 (Al/Si order/disorder) transformation at high temperatures in the albite-anorthite solid solution leads to a simple model for the mixing properties of the high structural state plagioclase feldspars. The disordered (Cˉ1) solid solution can be treated as ideal (constant activity coefficient) and, for anorthite-rich compositions, deviations from ideality can be ascribed to cation ordering. Values of the activity coefficient for anorthite in the Cˉ1 solid solution (γ An Cˉ1 ) are then controlled by the free energy difference between Cˉ1 and Iˉ1 anorthite at the temperature (T) of interest according to the relation: ΔˉG ord Iˉ1 ⇌Cˉ1 =RT ln γ An Cˉ1 . If the Iˉ1⇌Cˉ1 transformation in pure anorthite is treated, to a first approximation, as first order and the enthalpy and entropy of ordering are taken as 3.7±0.6 kcal/mole (extrapolated from calorimetric data) and 1.4–2.2 cal/mole (using an equilibrium order/disorder temperature for An100 of 2,000–2,250 K), a crude estimate of γ An Cˉ1 for all temperatures can be made. The activity coefficient of albite in the Cˉ1 solid solution (γ Ab Cˉ1 ) can be taken as 1.0. The possible importance of this model lies in its identification of the principal constraints on the mixing properties rather than in the actual values of γ An Cˉ1 and γ Ab Cˉ1 obtained. In particular it is recognised that γ An Cˉ1 depends critically on ordering in anorthite as well as, at lower temperatures, any ordering in the Cˉ1 solid solution. A brief review of activity-composition data, from published experiments involving ranges of plagioclase compositions and from the combined heats of mixing plus Al-avoidance entropy model (Newton et al. 1980), reveals some inconsistencies. The values of γ An Cˉ1 calculated using the approach of Newton et al. (1980), although consistent with Orville's (1972) ion exchange data, are slightly lower than values derived from experiments by Windom and Boettcher (1976) and Goldsmith (1982) or from ion-exchange experiments of Kotel'nikov et al. (1981). Based on the Cˉ1/Iˉ1 transformation model, values of γ An Cˉ1 <1.0 are unlikely. Discrepancies between the experimental data sets are attributed to incomplete (non-equilibrium) Al/Si order attained during the experiments. It is suggested that the choice of activity coefficients remains somewhat subjective. The development of accurate mixing models would be greatly assisted by better thermodynamic data for ordering in pure anorthite and by more thorough characterisation of the state of order in plagioclase crystals used for phase equilibrium experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号