首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2444篇
  免费   93篇
  国内免费   69篇
测绘学   64篇
大气科学   227篇
地球物理   527篇
地质学   927篇
海洋学   146篇
天文学   530篇
综合类   8篇
自然地理   177篇
  2024年   3篇
  2023年   16篇
  2022年   19篇
  2021年   45篇
  2020年   53篇
  2019年   49篇
  2018年   123篇
  2017年   89篇
  2016年   113篇
  2015年   80篇
  2014年   106篇
  2013年   170篇
  2012年   124篇
  2011年   162篇
  2010年   99篇
  2009年   171篇
  2008年   139篇
  2007年   144篇
  2006年   140篇
  2005年   97篇
  2004年   81篇
  2003年   80篇
  2002年   72篇
  2001年   45篇
  2000年   42篇
  1999年   37篇
  1998年   39篇
  1997年   26篇
  1996年   34篇
  1995年   24篇
  1994年   23篇
  1993年   17篇
  1992年   11篇
  1991年   9篇
  1990年   12篇
  1989年   8篇
  1988年   8篇
  1987年   12篇
  1986年   7篇
  1985年   6篇
  1984年   5篇
  1983年   11篇
  1982年   9篇
  1981年   7篇
  1979年   6篇
  1978年   3篇
  1975年   4篇
  1974年   7篇
  1973年   7篇
  1972年   4篇
排序方式: 共有2606条查询结果,搜索用时 12 毫秒
51.
Metamorphic assemblages within Karoo basalt xenoliths, found within volcaniclastic kimberlite of the B/K9 pipe, Damtshaa, Botswana, constrain conditions of kimberlite alteration. Bultfonteinite and chlorite partially replace the original augite-plagioclase assemblage, driven by the serpentinisation of the kimberlite creating strong chemical potential gradients for Si and Mg. Hydrogarnet and serpentine replace these earlier metamorphic assemblages as the deposits cool. The bultfonteinite (ideally Ca2SiO2[OH,F]4) and hydrogarnet assemblages require a water-rich fluid containing F, and imply hydrothermal alteration dominated by external fluids rather than autometamorphism from deuteric fluids. Bultfonteinite and hydrogarnet are estimated to form at temperatures of ca. 350–250°C, which are similar to those for serpentinisation. Alteration within the B/K9 kimberlite predominantly occurs between 250 and 400°C. We attribute these conditions to increased efficiency of mass transfer and chemical reactions below the critical point of water and a consequence of volume-increasing serpentinisation and metasomatic reactions that take place over this temperature range. A comparison of the B/K9 kimberlite with kimberlites from Venetia, South Africa suggests that the composition and mineralogy of included xenoliths affects the alteration assemblages within kimberlite deposits.  相似文献   
52.
Using a recently developed global vegetation distribution, topography, and shorelines for the Early Eocene in conjunction with the Genesis version 2.0 climate model, we investigate the influences that these new boundary conditions have on global climate. Global mean climate changes little in response to the subtle changes we made; differences in mean annual and seasonal surface temperatures over northern and southern hemispheric land, respectively, are on the order of 0.5°C. In contrast, and perhaps more importantly, continental scale climate exhibits significant responses. Increased peak elevations and topographic detail result in larger amplitude planetary 4 mm/day and decreases by 7–9 mm/day in the proto Himalayan region. Surface temperatures change by up to 18°C as a direct result of elevation modifications. Increased leaf area index (LAI), as a result of altered vegetation distributions, reduces temperatures by up to 6°C. Decreasing the size of the Mississippi embayment decreases inland precipitation by 1–2 mm/day. These climate responses to increased accuracy in boundary conditions indicate that “improved” boundary conditions may play an important role in producing modeled paleoclimates that approach the proxy data more closely.  相似文献   
53.
54.
In this paper, we report our preliminary results on enhanced star formation activity in Seyfert 2 galaxies. By re-analysing the Tully-Fisher relation for Whittle's (1992) sample and for a Seyfert 2s' sample selecting from Veron-Cetty and Veron (1996), we find that (1) almost all Seyfert 2 galaxies with circumnuclear star formation have a ratio of far infrared (FIR) to blue luminosities (LFIR/LB) to be larger than 1/3; (2) for Seyfert 2 galaxies with LFIR/LB > 1/3, the Tuly-Fisher relation is similar to that of the normal spiral galaxies; while for those with LFIR/LB ≥ 1/3, they are significantly different from the normal ones, which confirms Whittle's suggestion of enhanced star formation activities in the circumnuclear regions of these Seyfert 2 galaxies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
55.
L. Li  Q. Yu  Z. Su  C. van der Tol 《水文研究》2009,23(5):665-674
Estimation of evapotranspiration from a crop field is of great importance for detecting crop water status and proper irrigation scheduling. The Penman–Monteith equation is widely viewed as the best method to estimate evapotranspiration but it requires canopy resistance, which is very difficult to determine in practice. This paper presents a simple method simplified from the Penman–Monteith equation for estimating canopy temperature (Tc). The proposed method is a biophysically‐sound extended version of that proposed by Todorovic. The estimated canopy temperature is used to calculate sensible heat flux, and then latent heat flux is calculated as the residual of the surface energy balance. An eddy covariance (EC) system and an infrared thermometer (IRT) were installed in an irrigated winter wheat field on the North China Plain in 2004 and 2005, to measure Tc, and sensible and latent heat fluxes were used to test the modified Todorovic model (MTD). The results indicate that the original Todorovic model (TD) severely underestimates Tc and sensible heat flux, and hence severely overestimates the latent heat flux. However, the MTD model has good capability for estimating Tc, and gives acceptable results for latent heat flux at both half‐hourly and daily scales. The MTD model results also agreed well with the evapotranspiration calculated from the measured Tc. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
56.
Variations in speleothem oxygen-isotope values (δ18O) result from a complicated interplay of environmental controls and processes in the ocean, atmosphere, soil zone, epikarst, and cave system. As such, the controls on speleothem δ18O values are extremely complex. An understanding of the processes that control equilibrium and kinetic fractionation of oxygen isotopes in water and carbonate species is essential for the proper interpretation of speleothem δ18O as paleoclimate and paleoenvironmental proxies, and is best complemented by study of site-specific cave processes such as infiltration, flow routing, drip seasonality and saturation state, and cave microclimate, among others. This review is a process-based summary of the multiple controls on δ18O in the atmosphere, soil, epikarst, and speleothem calcite, illustrated with case studies. Primary controls of δ18O in the atmosphere include temperature and relative humidity through their role in the multiple isotope “effects”. Variability and modifications of water δ18O values in the soil and epikarst zones are dominated by evaporation, mixing, and infiltration of source waters. The isotopically effective recharge into a cave system consists of those waters that participate in precipitation of CaCO3, resulting in calcite deposition rates which may be biased to time periods with optimal dripwater saturation state. Recent modeling, experimental, and observational data yield insight into the significance of kinetic fractionation between dissolved carbonate phases and solid CaCO3, and have implications for the ‘Hendy’ test. To assist interpretation of speleothem δ18O time series, quantitative and semi-quantitative δ18O-climate calibrations are discussed with an emphasis on some of the difficulties inherent in using modern spatial and temporal isotope gradients to interpret speleothems as paleoclimate proxy records. Finally, several case studies of globally significant speleothem paleoclimate records are discussed that show the utility of δ18O to reconstruct past climate changes in regions that have been typically poorly represented in paleoclimate records, such as tropical and subtropical terrestrial locations. The new approach to speleothem paleoclimatology emphasizes climate teleconnections between regions and attribution of forcing mechanisms. Such investigations allow paleoclimatologists to infer regional to global-scale climate dynamics.  相似文献   
57.
We consider the response of marshland to accelerations in the rate of sea-level rise by utilizing two previously described numerical models of marsh elevation. In a model designed for the Scheldt Estuary (Belgium–SW Netherlands), a feedback between inundation depth and suspended sediment concentrations allows marshes to quickly adjust their elevation to a change in sea-level rise rate. In a model designed for the North Inlet Estuary (South Carolina), a feedback between inundation and vegetation growth allows similar adjustment. Although the models differ in their approach, we find that they predict surprisingly similar responses to sea-level change. Marsh elevations adjust to a step change in the rate of sea-level rise in about 100 years. In the case of a continuous acceleration in the rate of sea-level rise, modeled accretion rates lag behind sea-level rise rates by about 20 years, and never obtain equilibrium. Regardless of the style of acceleration, the models predict approximately 6–14 cm of marsh submergence in response to historical sea-level acceleration, and 3–4 cm of marsh submergence in response to a projected scenario of sea-level rise over the next century. While marshes already low in the tidal frame would be susceptible to these depth changes, our modeling results suggest that factors other than historical sea-level acceleration are more important for observations of degradation in most marshes today.  相似文献   
58.
We constrain a three-dimensional thermomechanical model of Greenland ice sheet (GrIS) evolution from the Last Glacial Maximum (LGM, 21 ka BP) to the present-day using, primarily, observations of relative sea level (RSL) as well as field data on past ice extent. Our new model (Huy2) fits a majority of the observations and is characterised by a number of key features: (i) the ice sheet had an excess volume (relative to present) of 4.1 m ice-equivalent sea level at the LGM, which increased to reach a maximum value of 4.6 m at 16.5 ka BP; (ii) retreat from the continental shelf was not continuous around the entire margin, as there was a Younger Dryas readvance in some areas. The final episode of marine retreat was rapid and relatively late (c. 12 ka BP), leaving the ice sheet land based by 10 ka BP; (iii) in response to the Holocene Thermal Maximum (HTM) the ice margin retreated behind its present-day position by up to 80 km in the southwest, 20 km in the south and 80 km in a small area of the northeast. As a result of this retreat the modelled ice sheet reaches a minimum extent between 5 and 4 ka BP, which corresponds to a deficit volume (relative to present) of 0.17 m ice-equivalent sea level. Our results suggest that remaining discrepancies between the model and the observations are likely associated with non-Greenland ice load, differences between modelled and observed present-day ice elevation around the margin, lateral variations in Earth structure and/or the pattern of ice margin retreat.  相似文献   
59.
We present a high-resolution terrestrial archive of Central American rainfall over the period 100–24 and 8.1–6.5 ka, based on δ18O time series from U-series dated stalagmites collected from a cave on the Pacific Coast of Costa Rica. Our results indicate substantial δ18O variability on millennial to orbital time scales that is interpreted to reflect rainfall variations over the cave site. Correlations with other paleoclimate proxy records suggest that the rainfall variations are forced by sea surface temperatures (SST) in the Atlantic and Pacific Oceans in a fashion analogous to the modern climate cycle. Higher rainfall is associated with periods of a warm tropical North Atlantic Ocean and large SST gradients between the Atlantic and Pacific Oceans. Rainfall variability is likely linked to the intensity and/or latitudinal position of the intertropical convergence zone (ITCZ). Periods of higher rainfall in Costa Rica are also associated with an enhanced sea surface salinity gradient on either side of the isthmus, suggesting greater freshwater export from the Atlantic Basin when the ITCZ is stronger and/or in a more northerly position. Further, wet periods in Central America coincide with high deuterium excess values in Greenland ice, suggesting a direct link between low latitude SSTs, tropical rainfall, and moisture delivery to Greenland. Our results indicate that a stronger tropical hydrological cycle during warm periods and large inter-ocean SST gradients enhanced the delivery of low latitude moisture to Greenland.  相似文献   
60.
This paper is devoted to micromechanical modeling of induced anisotropic damage in brittle geomaterials. The formulation of the model is based on a proper homogenization procedure by taking into account unilateral effects and interactions between microcracks. The homogenization procedure is developed in the framework of Eshelby's inclusion solution and Ponte‐Castaneda and Willis (J. Mech. Phys. Solids 1995; 43 :1919–1951) estimate. The homogenization technique is combined with the thermodynamics framework at microscopic level for the determination of damage evolution law. A rigorous crack opening–closure transition condition is established and an energy‐release‐rate‐based damage criterion is proposed. Computational aspects on the implementation of micromechanical model are also discussed. The proposed model is evaluated by comparing numerical predictions with experimental data for various laboratory tests on concrete. Parametric studies on unilateral effects and influences of microcracks interactions are finally performed and analyzed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号