Ionospheric disturbances present a considerable hazard to single-frequency satellite navigation systems for airborne users. We discuss our implementation of three ionospheric threat models in the DLR “multi-output advanced signal test environment for receivers” global navigation satellite system simulator, which is based on Spirent GSS 7780/7790 signal generator. These threat models include the standard front-based threat model developed for the integrity assessment of ground-based augmentation systems (GBAS), a simplified plasma bubble model, and ionospheric scintillation, which can be combined with either of the two previously mentioned models. These effects can now straightforwardly be simulated at the German Aerospace Center’s research facilities. As an example, we simulate a GBAS ground facility with code–carrier divergence monitoring, affected by an ionospheric front, and we show the results of a simulation with coincidental occurrence of a plasma bubble and scintillation with an S4 index of 0.4. 相似文献
Risk, including flood risk, can be defined as ??the combination of the probability of an event and its consequences??. Assessing and managing the risk from flooding should explicitly include the estimation of impacts to people. Extensive research is currently ongoing looking at both quantitative and qualitative approaches for assessing flood impacts on people. Although there is some literature available on such approaches, examples of methodological and routinely applications of these methodologies as part of flood risk assessments are rare. This paper focuses on quantitative approaches for estimating impacts of flooding to people, notably on methods for assessing fatality numbers associated with flooding. Three methods for assessing losses of life are discussed in detail. The methods discussed here constitute the forefront of research in Canada, UK and The Netherlands. These methods provide an assessment of the physical consequences of flooding on people and can be used to introduce the impacts to people as quantitative metric for the assessment of flood risk. In this paper, the three methodologies are discussed and applied in a UK case study reproducing the 1953 East Coast flood event. This study aims to provide a comprehensive comparison on both the reliability and the applicability of the methods. We analyse possible added values on using of these methods in systematic analyses, aiming to provide guidelines for applying these methods for flood fatality risk assessment. 相似文献
On the basis of the approximate analytical solution for the nonlinear shallow water equations of Antuono and Brocchini [M. Antuono & M. Brocchini, The boundary value problem for the nonlinear shallow water equation, Stud. Appl. Maths, 119, 71–91 (2007).], we propose useful regression curves for the prediction of maximum run-up and dynamical forces in the swash zone on a frictionless, uniformly sloping beach. For the first time the dependence of the results on both the wave height and the wave steepness is analyzed in detail providing formulae able to describe a wide class of wave inputs. Finally, the regression formulae are validated through comparison with maximum run-up laws and breaking conditions already available in the literature, the present model results appearing to better account for nonlinear effects. 相似文献
The recognized ecological importance of Posidonia oceanica, the most important seagrass of the Mediterranean Sea, makes it crucial to assess the state of health of its meadows, discriminating natural from anthropogenic impacts. In this paper, the hydrodynamic conditions at the upper limit of P. oceanica meadows along the Ligurian coast (NW Mediterranean Sea) were investigated. A relationship between the distance of the upper limit of the meadow from the shoreline and the morphodynamic domain of the beach (i.e. distinctive types of beach produced by the topography, wave climate and sediment composition) was found. A zonation of the state of the shallow portions of the meadows down the submerged beach profile was identified. Zone a, from the shoreline to the breaking limit, is naturally critical for the development of the meadow. Zone b, from the breaking limit to the closure depth, is subjected to natural and human impacts. Zone c, below the closure depth, is little influenced by coastal dynamics. This study quantifies for the first time how much the status of the shallow portions of P. oceanica meadows is dependent on coastal dynamics, which is important for their proper management. 相似文献
In granular soils grain crushing reduces dilatancy and stress obliquity enhances crushability. These are well-supported specimen-scale experimental observations. In principle, those observations should reflect some peculiar micromechanism associated with crushing, but which is it? To answer that question the nature of crushing-induced particle-scale interactions is here investigated using an efficient DEM model of crushable soil. Microstructural measures such as the mechanical coordination number and fabric are examined while performing systematic stress probing on the triaxial plane. Numerical techniques such as parallel and the newly introduced sequential probing enable clear separation of the micromechanical mechanisms associated with crushing. Particle crushing is shown to reduce fabric anisotropy during incremental loading and to slow fabric change during continuous shearing. On the other hand, increased fabric anisotropy does take more particles closer to breakage. Shear-enhanced breakage appears then to be a natural consequence of shear-enhanced fabric anisotropy. The particle crushing model employed here makes crushing dependent only on particle and contact properties, without any pre-established influence of particle connectivity. That influence does not emerge, and it is shown how particle connectivity, per se, is not a good indicator of crushing likelihood.
We analyse Chandra , XMM–Newton and Hubble Space Telescope ( HST ) data of the double-nucleus Ultraluminous Infrared Galaxy (ULIRG), Mrk 463. The Chandra detection of two luminous ( L 2–10 keV= 1.5 × 1043 and 3.8 × 1042 erg cm−2 s−1) , unresolved nuclei in Mrk 463 indicates that this galaxy hosts a binary active galactic nucleus (AGN), with a projected separation of ≃3.8 kpc ( 3.83 ± 0.01 arcsec). While the East nucleus was already known to be a type 2 Seyfert (and this is further confirmed by our Chandra detection of a neutral iron line), this is the first unambiguous evidence in favour of the AGN nature of the West nucleus. Mrk 463 is therefore the clearest case so far for a binary AGN, after NGC 6240. 相似文献