首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   19篇
  国内免费   1篇
测绘学   16篇
大气科学   14篇
地球物理   51篇
地质学   47篇
海洋学   14篇
天文学   84篇
综合类   1篇
自然地理   24篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   15篇
  2017年   7篇
  2016年   11篇
  2015年   12篇
  2014年   14篇
  2013年   8篇
  2012年   7篇
  2011年   12篇
  2010年   9篇
  2009年   10篇
  2008年   12篇
  2007年   10篇
  2006年   20篇
  2005年   13篇
  2004年   15篇
  2003年   12篇
  2002年   9篇
  2001年   11篇
  2000年   9篇
  1999年   4篇
  1998年   6篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1969年   1篇
排序方式: 共有251条查询结果,搜索用时 505 毫秒
191.
Shelf break systems are highly dynamic environments. However little is known about the influence that benthic interactions and water mass mixing may have on vertical distributions of iron in these systems. Dissolved Fe (< 0.4 μm) concentrations were measured in samples from nine vertical profiles across the upper slope (150–2950 m water depth) at the Atlantic Ocean–Celtic Sea shelf break. Dissolved iron concentrations varied between less than 0.2 and 5.4 nM, and the resulting detailed section showed evidence of a range of processes influencing the Fe distributions. The near sea floor data were interpreted in terms of release and removal processes. The concentrations of dissolved Fe present in near seabed waters were consistent with release of Fe from in situ remineralisation of particulate organic matter at two upper slope stations, and possibly release from pore water upon resuspension on shelf. Lateral transport of dissolved iron was evident from elevated Fe concentrations in an intermediate nepheloid layer and its advection along isopycnals. Surface waters at the shelf break also showed evidence of vertical mixing of deeper iron-rich waters. These waters contained macronutrients that sustained primary productivity in these otherwise nutrient-depleted surface waters. The data also suggest some degree of stabilisation of relatively high concentrations of iron, presumably through ligand association or as colloids. This study supports the view that lateral export of dissolved iron to the interior of the ocean from shelf and coastal zones and may have important implications for the global budget of oceanic iron.  相似文献   
192.
The future status of the surface ocean around New Zealand was projected using two Earth System Models and four emission scenarios. By 2100 mean changes are largest under Representative Concentration Pathway 8.5 (RCP8.5), with a +2.5°C increase in sea surface temperature, and decreases in surface mixed layer depth (15%), macronutrients (7.5–20%), primary production (4.5%) and particle flux (12%). Largest macronutrient declines occur in the eastern Chatham Rise and subantarctic waters to the south, whereas dissolved iron increases in subtropical waters. Surface pH projections, validated against subantarctic time-series data, indicate a 0.335 decline to ~7.77 by 2100. However, projected pH is sensitive to future CO2 emissions, remaining within the current range under RCP2.6, but decreasing below it by 2040 with all other scenarios. Sub-regions vulnerable to climate change include the Chatham Rise, polar waters south of 50°S, and subtropical waters north of New Zealand, whereas the central Tasman Sea is least affected.  相似文献   
193.
While many of New Zealand’s freshwater fishes undertake larval migrations as part of their amphidromous life-history, little is known of the larval stages of these fish. Torrentfish (Cheimarrchthys fosteri), a New Zealand endemic, amphidromous, riffle specialist are particularly enigmatic; their spawning sites and behaviours are unknown, and larvae have never been collected either emigrating from freshwater or during their marine feeding phase. During summer drift sampling, we captured unidentified fish larvae emigrating downstream in the Waianakarua River, South Island, New Zealand. Based on multiple lines of evidence (meristic comparisons with adults, morphology, time of capture, and adult fish populations of the Waianakarua) we identify these larvae as torrentfish. This represents the first time torrentfish larvae have been captured or identified, laying the foundations for future studies into the early life-history and ecology of this unique and threatened fish.  相似文献   
194.
The UN Framework Convention on Climate Change calls for the avoidance of “dangerous anthropogenic interference with the climate system”. Among the many plausible choices, dangerous interference with the climate system may be interpreted as anthropogenic radiative forcing causing distinct and widespread climate change impacts such as a widespread demise of coral reefs or a disintegration of the West Antarctic ice sheet. The geological record and numerical models suggest that limiting global warming below critical temperature thresholds significantly reduces the likelihood of these eventualities. Here we analyze economically optimal policies that may ensure this risk-reduction. Reducing the risk of a widespread coral reef demise implies drastic reductions in greenhouse gas emissions within decades. Virtually unchecked greenhouse gas emissions to date (combined with the inertia of the coupled natural and human systems) may have already committed future societies to a widespread demise of coral reefs. Policies to reduce the risk of a West Antarctic ice sheet disintegration allow for a smoother decarbonization of the economy within a century and may well increase consumption in the long run.  相似文献   
195.
Measurement of dispersed vitrinite reflectance in organic sediments is one of the few regional data sets used for placing bounds on the thermal history of a sedimentary basin. Reflectance data are important when access to complementary information such as high‐quality seismic data is unavailable to place bounds on subsidence history and in locations where uplift is an important part of the basin history. Attributes which make vitrinite reflectance measurements a useful data set are the relative ease of making the measurement, and the availability of archived well cores and cuttings in state, provincial, and federal facilities. In order to fully utilize vitrinite data for estimating the temperature history in a basin, physically based methods are required to calibrate an equivalent reflectance from a modelled temperature history with measured data. The most common method for calculating a numerical vitrinite reflectance from temperature history is the EASY%Ro method which we show systematically underestimates measured data. We present a new calculated reflectance model and an adjustment to EASY%Ro which makes the correlation between measured vitrinite values and calculated vitrinite values a physical relationship and more useful for constraining thermal models. We then show that calibrating the thermal history to vitrinite on a constant age date surface (e.g., top Cretaceous) instead of calibrating the thermal history in depth removes the heating rate component from the reflectance calculation and makes thermal history calibration easier to understand and more directly related to heat flow. Finally, we use bounds on the vitrinite–temperature relationships on a constant age date surface to show that significant uncertainty exists in the vitrinite data reported in most data sets.  相似文献   
196.

Iron(III)-precipitates formed by the oxidation of dissolved Fe(II) are important sorbents for major and trace elements in aquatic and terrestrial systems. Their reductive dissolution in turn may result in the release of associated elements. We examined the reductive dissolution kinetics of an environmentally relevant set of Fe(II)-derived arsenate-containing Fe(III)-precipitates whose structure as function of phosphate (P) and silicate (Si) content varied between poorly-crystalline lepidocrocite, amorphous Fe(III)-phosphate, and Si-containing ferrihydrite. The experiments were performed with 0.2–0.5 mM precipitate-Fe(III) using 10 mM Na-ascorbate as reductant, 5 mM bipyridine as Fe(II)-complexing ligand, and 10 mM MOPS/5 mM NaOH as pH 7.0 buffer. Times required for the dissolution of half of the precipitate (t50%) ranged from 1.5 to 39 h; spanning a factor 25 range. At loadings up to ~ 0.2 P/Fe (molar ratio), phosphate decreased the t50% of Si-free precipitates, probably by reducing the crystallinity of lepidocrocite. The reductive dissolution of Fe(III)-phosphates formed at higher P/Fe ratios was again slower, possibly due to P-inhibited ascorbate binding to precipitate-Fe(III). The slowest reductive dissolution was observed for P-free Si-ferrihydrite with ~ 0.1 Si/Fe, suggesting that silicate binding and polymerization may reduce surface accessibility. The inhibiting effect of Si was reduced by phosphate. Dried-resuspended precipitates dissolved 1.0 to 1.8-times more slowly than precipitates that were kept wet after synthesis, most probably because drying enhanced nanoparticle aggregation. Variations in the reductive dissolution kinetics of Fe(II) oxidation products as reported from this study should be taken into account when addressing the impact of such precipitates on the environmental cycling of co-transformed nutrients and contaminants.

  相似文献   
197.
The provision of accurate models of Glacial Isostatic Adjustment (GIA) is presently a priority need in climate studies, largely due to the potential of the Gravity Recovery and Climate Experiment (GRACE) data to be used to determine accurate and continent-wide assessments of ice mass change and hydrology. However, modelled GIA is uncertain due to insufficient constraints on our knowledge of past glacial changes and to large simplifications in the underlying Earth models. Consequently, we show differences between models that exceed several mm/year in terms of surface displacement for the two major ice sheets: Greenland and Antarctica. Geodetic measurements of surface displacement offer the potential for new constraints to be made on GIA models, especially when they are used to improve structural features of the Earth’s interior as to allow for a more realistic reconstruction of the glaciation history. We present the distribution of presently available campaign and continuous geodetic measurements in Greenland and Antarctica and summarise surface velocities published to date, showing substantial disagreement between techniques and GIA models alike. We review the current state-of-the-art in ground-based geodesy (GPS, VLBI, DORIS, SLR) in determining accurate and precise surface velocities. In particular, we focus on known areas of need in GPS observation level models and the terrestrial reference frame in order to advance geodetic observation precision/accuracy toward 0.1 mm/year and therefore further constrain models of GIA and subsequent present-day ice mass change estimates.  相似文献   
198.
General Relativity effects (gravitational redshift, light bending, …) strongly modify the characteristics of the lines emitted close to the Black Hole in Active Galactic Nuclei and Galactic Black Hole systems. These effects are reviewed and illustrated, with particular emphasis on line emission from the accretion disc. Methods, based on the iron line, to measure the two astrophysically relevant parameters of a Black Hole, the mass and spin, are briefly discussed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
199.
We present the analysis of optical and X‐ray XMM‐Newton data of the source 4U 1344‐60. On the basis of the optical data we propose to classify 4U 1344‐60 as a Seyfert 1.5 galaxy and we measured a redshift value z = 0.012 ± 0.001. The observed X‐ray spectrum is complex. The continuum emission can be described as a power law obscured by two neutral absorption components. 4U 1344‐60 exhibits a broad and skewed iron line at 6.4 keV most likely originated in a few gravitational radius of an accretion disc. The analysis also reveals the presence of two narrow emission line‐like features at ∼4.9 keV and ∼5.3 keV. Assuming that hot spots on the surface of the accretion disc, orbiting very close to the black hole is responsible of these emission lines, the accretion disc would present an inclination of 20° and the active regions would be located in the 6–10 R g radius range. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
200.
Real-time dynamic substructuring (RTDS) is an experimental technique that splits the structure under test into coupled parts that run in parallel. The structural component exhibiting unpredictable behaviour is tested in the laboratory while the remainder of the structure is modelled numerically. As the test proceeds, the dynamic force state at the physical–numerical interface is measured and a transfer system, usually a servo-hydraulic actuator or shaking table, is used to impose the commensurate response on the physical substructure. The integral dynamics of servo-hydraulic transfer systems can frustrate RTDS implementation by destabilising the system. Many have noted the deleterious stability implications of excessive phase lag in terms of a pure time-delay. However, because of the existence of magnitude variations and more complex phase characteristics, pure time-delay is too simple to represent the inherent nature of servo-hydraulic transfer systems. This paper considers RTDS stability in light of comprehensive transfer system dynamics. A transfer-function model of a servo-hydraulic transfer system is adopted and used to reflect the oversimplification of pure time-delay. The concept of gain margin is employed to reveal the drawbacks of the pure-delay based RTDS stability analyses. In order to overcome the drawbacks, a new method based on gain margin was developed. The comparative analyses demonstrate that the gain margin based method is tailored to predict the stability boundaries of a RTDS system incorporating comprehensive transfer system dynamics. The validity of the technique is verified experimentally through virtual and authentic RTDS system employing a shaking table. The performance of delay compensated shaking table RTDS is also assessed in perspective of stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号