全文获取类型
收费全文 | 1043篇 |
免费 | 25篇 |
国内免费 | 3篇 |
专业分类
测绘学 | 23篇 |
大气科学 | 71篇 |
地球物理 | 224篇 |
地质学 | 247篇 |
海洋学 | 104篇 |
天文学 | 310篇 |
综合类 | 1篇 |
自然地理 | 91篇 |
出版年
2021年 | 6篇 |
2020年 | 11篇 |
2019年 | 14篇 |
2018年 | 18篇 |
2017年 | 13篇 |
2016年 | 24篇 |
2015年 | 21篇 |
2014年 | 24篇 |
2013年 | 51篇 |
2012年 | 27篇 |
2011年 | 30篇 |
2010年 | 41篇 |
2009年 | 57篇 |
2008年 | 40篇 |
2007年 | 48篇 |
2006年 | 63篇 |
2005年 | 41篇 |
2004年 | 58篇 |
2003年 | 45篇 |
2002年 | 33篇 |
2001年 | 40篇 |
2000年 | 34篇 |
1999年 | 21篇 |
1998年 | 30篇 |
1997年 | 19篇 |
1996年 | 11篇 |
1995年 | 13篇 |
1994年 | 4篇 |
1993年 | 12篇 |
1992年 | 7篇 |
1991年 | 4篇 |
1990年 | 6篇 |
1989年 | 15篇 |
1988年 | 5篇 |
1987年 | 13篇 |
1986年 | 8篇 |
1985年 | 18篇 |
1984年 | 6篇 |
1983年 | 5篇 |
1982年 | 9篇 |
1981年 | 16篇 |
1980年 | 8篇 |
1979年 | 9篇 |
1978年 | 5篇 |
1977年 | 12篇 |
1975年 | 8篇 |
1974年 | 7篇 |
1973年 | 9篇 |
1972年 | 7篇 |
1969年 | 5篇 |
排序方式: 共有1071条查询结果,搜索用时 15 毫秒
1.
2.
Reconnaissance seismic shot in 1971/72 showed a number of well defined seismic anomalies within the East Sengkang Basin which were interpreted as buried reefs. Subsequent fieldwork revealed that Upper Miocene reefs outcropped along the southern margin of the basin. A drilling programme in 1975 and 1976 proved the presence of shallow, gas-bearing, Upper Miocene reefs in the northern part of the basin. Seismic acquisition and drilling during 1981 confirmed the economic significance of these discoveries, with four separate accumulations containing about 750 × 109 cubic feet of dry gas in place at an average depth of 700 m. Kampung Baru is the largest field and contains over half the total, both reservoir quality and gas deliverability are excellent. Deposition in the East Sengkang Basin probably started during the Early Miocene. A sequence of Lower Miocene mudstones and limestones unconformably overlies acoustic basement which consists of Eocene volcanics. During the tectonically active Middle Miocene, deposition was interrupted by two periods of deformation and erosion. Carbonate deposition became established in the Late Miocene with widespread development of platform limestones throughout the East Sengkang Basin. Thick pinnacle reef complexes developed in the areas where reef growth could keep pace with the relative rise in sea level. Most reef growth ceased at the end of the Miocene and subsequent renewed clastic sedimentation covered the irregular limestone surface. Late Pliocene regression culminated in the Holocene with erosion. The Walanae fault zone, part of a major regional sinistral strike-slip system, separates the East and West Sengkang Basins. Both normal and reverse faulting are inferred from seismic data and post Late Pliocene reverse faulting is seen in outcrop. 相似文献
3.
4.
C. S. M. Turney K. Van Den Burg S. Wastegrd S. M. Davies N. J. Whitehouse J. R. Pilcher C. Callaghan 《第四纪科学杂志》2006,21(4):335-345
High‐precision correlation of palaeoclimatic and palaeoenvironmental records is crucial for testing hypotheses of synchronous change. Although radiocarbon is the traditional method for dating late Quaternary sedimentary sequences, particularly during the last glacial–interglacial transition (LGIT; 15–9 ka), there are inherent problems with the method, particularly during periods of climate change which are often accompanied by major perturbations in atmospheric radiocarbon content. An alternative method is the use of tephras that act as time‐parallel marker horizons. Within Europe, numerous volcanic centres are known to have erupted during the LGIT, providing considerable potential for high‐precision correlation independent of past radiocarbon fluctuations. Here we report the first identification of the Vedde Ash and Askja Tephra in Ireland, significantly extending the known provenance of these events. We have also identified two new horizons (the Roddans Port Tephras A and B) and tentatively recognise an additional horizon from Vallensgård Mose (Denmark) that provide crucial additional chronological control for the LGIT. Two phases of the Laacher See Tephra (LST) are reported, the lower Laacher See Tephra (LLST) and probably the C2 phase of the Middle Laacher See Tephra (MLST‐C2) indicating a more northeasterly distribution of this fan than reported previously. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
5.
Three finite element codes, namely TELEMAC, ADCIRC and QUODDY, are used to compute the spatial distributions of the M2, M4 and M6 components of the tide in the sea region off the west coast of Britain. This region is chosen because there is an accurate
topographic dataset in the area and detailed open boundary M2 tidal forcing for driving the model. In addition, accurate solutions (based upon comparisons with extensive observations)
using uniform grid finite difference models forced with these open boundary data exist for comparison purposes. By using boundary
forcing, bottom topography and bottom drag coefficients identical to those used in an earlier finite difference model, there
is no danger of comparing finite element solutions for “untuned unoptimised solutions” with those from a “tuned optimised
solution”. In addition, by placing the open boundary in all finite element calculations at the same location as that used
in a previous finite difference model and using the same M2 tidal boundary forcing and water depths, a like with like comparison of solutions derived with the various finite element
models was possible. In addition, this open boundary was well removed from the shallow water region, namely the eastern Irish
Sea where the higher harmonics were generated. Since these are not included in the open boundary, forcing their generation
was determined by physical processes within the models. Consequently, an inter-comparison of these higher harmonics generated
by the various finite element codes gives some indication of the degree of variability in the solution particularly in coastal
regions from one finite element model to another. Initial calculations using high-resolution near-shore topography in the
eastern Irish Sea and including “wetting and drying” showed that M2 tidal amplitudes and phases in the region computed with TELEMAC were in good agreement with observations. The ADCIRC code
gave amplitudes about 30 cm lower and phases about 8° higher. For the M4 tide, in the eastern Irish Sea amplitudes computed with TELEMAC were about 4 cm higher than ADCIRC on average, with phase
differences of order 5°. For the M6 component, amplitudes and phases showed significant small-scale variability in the eastern Irish Sea, and no clear bias between
the models could be found. Although setting a minimum water depth of 5 m in the near-shore region, hence removing wetting
and drying, reduced the small-scale variability in the models, the differences in M2 and M4 tide between models remained. For M6, a significant reduction in variability occurred in the eastern Irish Sea when a minimum 5-m water depth was specified. In
this case, TELEMAC gave amplitudes that were 1 cm higher and phases 30° lower than ADCIRC on average. For QUODDY in the eastern
Irish Sea, average M2 tidal amplitudes were about 10 cm higher and phase 8° higher than those computed with TELEMAC. For M4, amplitudes were approximately 2 cm higher with phases of order 15° higher in the northern part of the region and 15° lower
in the southern part. For M6 in the north of the region, amplitudes were 2 cm higher and about 2 cm lower in the south. Very rapid M6 tidal-phase changes occurred in the near-shore regions. The lessons learned from this model inter-comparison study are summarised
in the final section of the paper. In addition, the problems of performing a detailed model–model inter-comparison are discussed,
as are the enormous difficulties of conducting a true model skill assessment that would require detailed measurements of tidal
boundary forcing, near-shore topography and precise knowledge of bed types and bed forms. Such data are at present not available. 相似文献
6.
7.
Recent models of chemical weathering in alpine glacial meltwaters suggest that sulphide oxidation is a major source of solute in the distributed component of the subglacial hydrological system. This reaction requires O2, and may lower dissolved oxygen levels to below saturation with respect to the atmosphere. This should result in an inverse association between SO72- and dissolved oxygen saturation. However, measurements of O2 saturation in bulk meltwaters draining the Haut Glacier d'Arolla, Switzerland, show that there is a positive association between SO42- and O2 saturation. The O2 content of glacial meltwaters depends on the initial content of snow and icemelt, which may be controlled by the rate of melting, and the kinetic balance between O2 losses (e.g. sulphide oxidation, microbial respiration) and gains (e.g. diffusion of O2 into solution). 相似文献
8.
Trenton T Cladouhos Susan Petty Yini Nordin Michael Moore Kyla Grasso Matt Uddenberg Michael W Swyer 《地下水科学与工程》2014,2(3):1-7
The Newberry Volcano EGS Demonstration in central Oregon tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. An EGS reservoir was created by injecting large volumes of cold water, causing existing fractures to slip in shear (known as hydroshearing) generating the seismic waves that can be used to map fracture location and size. At the Newberry Demonstration the final injectivity ranged between 1.4 and 1.7 L/s/MPa a ~6x improvement over the initial injectivity of the well. The injectivity improvement and seismic analysis indicate that previously impermeable fractures were enhanced during the NWG 55-29 stimulation. 相似文献
9.
10.
Enrico Costa Ronaldo Bellazzini Gianpiero Tagliaferri Giorgio Matt Andrea Argan Primo Attinà Luca Baldini Stefano Basso Alessandro Brez Oberto Citterio Sergio Di Cosimo Vincenzo Cotroneo Sergio Fabiani Marco Feroci Antonella Ferri Luca Latronico Francesco Lazzarotto Massimo Minuti Ennio Morelli Fabio Muleri Lucio Nicolini Giovanni Pareschi Giuseppe Di Persio Michele Pinchera Massimiliano Razzano Luigia Reboa Alda Rubini Antonio Maria Salonico Carmelo Sgro’ Paolo Soffitta Gloria Spandre Daniele Spiga Alessio Trois 《Experimental Astronomy》2010,28(2-3):137-183
Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray polarimetry promises to provide additional information procuring two new observable quantities, the degree and the angle of polarization. Polarization from celestial X-ray sources may derive from emission mechanisms themselves such as cyclotron, synchrotron and non-thermal bremsstrahlung, from scattering in aspheric accreting plasmas, such as disks, blobs and columns and from the presence of extreme magnetic field by means of vacuum polarization and birefringence. Matter in strong gravity fields and Quantum Gravity effects can be studied by X-ray polarimetry, too. POLARIX is a mission dedicated to X-ray polarimetry. It exploits the polarimetric response of a Gas Pixel Detector, combined with position sensitivity, that, at the focus of a telescope, results in a huge increase of sensitivity. The heart of the detector is an Application-Specific Integrated Circuit (ASIC) chip with 105,600 pixels each one containing a full complete electronic chain to image the track produced by the photoelectron. Three Gas Pixel Detectors are coupled with three X-ray optics which are the heritage of JET-X mission. A filter wheel hosting calibration sources unpolarized and polarized is dedicated to each detector for periodic on-ground and in-flight calibration. POLARIX will measure time resolved X-ray polarization with an angular resolution of about 20 arcsec in a field of view of 15 × 15 arcmin and with an energy resolution of 20% at 6 keV. The Minimum Detectable Polarization is 12% for a source having a flux of 1 mCrab and 105 s of observing time. The satellite will be placed in an equatorial orbit of 505 km of altitude by a Vega launcher. The telemetry down-link station will be Malindi. The pointing of POLARIX satellite will be gyroless and it will perform a double pointing during the earth occultation of one source, so maximizing the scientific return. POLARIX data are for 75% open to the community while 25% + SVP (Science Verification Phase, 1 month of operation) is dedicated to a core program activity open to the contribution of associated scientists. The planned duration of the mission is one year plus three months of commissioning and SVP, suitable to perform most of the basic science within the reach of this instrument. A nice to have idea is to use the same existing mandrels to build two additional telescopes of iridium with carbon coating plus two more detectors. The effective area in this case would be almost doubled. 相似文献