首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   14篇
  国内免费   6篇
测绘学   2篇
大气科学   24篇
地球物理   94篇
地质学   135篇
海洋学   99篇
天文学   57篇
综合类   11篇
自然地理   21篇
  2024年   1篇
  2022年   3篇
  2021年   10篇
  2020年   16篇
  2019年   7篇
  2018年   8篇
  2017年   14篇
  2016年   6篇
  2015年   9篇
  2014年   17篇
  2013年   21篇
  2012年   16篇
  2011年   15篇
  2010年   12篇
  2009年   22篇
  2008年   25篇
  2007年   14篇
  2006年   23篇
  2005年   24篇
  2004年   11篇
  2003年   12篇
  2002年   13篇
  2001年   5篇
  2000年   15篇
  1999年   11篇
  1998年   8篇
  1997年   6篇
  1996年   2篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1988年   5篇
  1987年   4篇
  1986年   5篇
  1985年   8篇
  1984年   7篇
  1983年   9篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1977年   3篇
  1976年   5篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有443条查询结果,搜索用时 31 毫秒
161.
Twenty four solar bursts of peak fluxes above 50 sfu are analyzed which were observed with the 17 GHz interferometer at Nobeyama during the period from 1978 September to 1979 December. Source characteristics and their temporal evolutions are investigated on a statistical basis with high time resolutions up to 0.8 s. Use of a model-fitting technique recently developed by Kosugi (1982) is made to derive both the position of centroid and size (~ FWHM) of burst source with an uncertainty of a few arc sec. The results of this study are the following:
  1. Two different phases in the burst, that is to say, the main phase and the post-burst-increase (PBI) phase, are distinguished clearly not only by the morphological difference of flux time profile, but also by the differences of brightness temperature (107-?109 K vs 105–107 K), circular polarization degree (0–50% vs 0–10%), and size (?5–25″ vs 10–70″). There is no definite correlation between the peak fluxes in the two phases.
  2. The majority of the selected bursts (21 of 24) show in the main phase source characteristics of the impulsive burst. The total flux varies rapidly (characteristic time scale defined by FWHM ? 100 s), often associated with the rapid shift of position and the rapid change of polarization degree. The source height of the impulsive source is lower than that of the PBI source. On the other hand, the type IVμ source, seen in three events, shows a gradual variation and the source ascends to a height of ~ 40 000 km above the photosphere.
  3. In the PBI phase, the expansion and ascension of the source occur in general (21 of 23 for the former and 12 of 15 for the latter). The velocities of both the movements are of the order of 5 km s?1.
  相似文献   
162.

Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level (ζ) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a ζ projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of ζ change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and ζ. The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the ζ change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic ζ change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific.

  相似文献   
163.
The global carbon cycle, one of the important biogeochemical cycles controlling the surface environment of the Earth, has been greatly affected by human activity. Anthropogenic nutrient loading from urban sewage and agricultural runoff has caused eutrophication of aquatic systems. The impact of this eutrophication and consequent photosynthetic activity on CO2 exchange between freshwater systems and the atmosphere is unclear. In this study, we focused on how nutrient loading to lakes affects their carbonate system. Here, we report results of surveys of lakes in Japan at different stages of eutrophication. Alkalization due to photosynthetic activity and decreases in PCO2 had occurred in eutrophic lakes (e.g., Lake Kasumigaura), whereas in an acidotrophic lake (Lake Inawashiro) that was impacted by volcanic hot springs, nutrient loading was changing the pH and carbon cycling. When the influence of volcanic activity was stronger in the past in Lake Inawashiro, precipitation of volcanic-derived iron and aluminum had removed nutrients by co-precipitation. During the last three decades, volcanic activity has weakened and the lake water has become alkalized. We inferred that this rapid alkalization did not result just from the reduction in acid inputs but was also strongly affected by increased photosynthetic activity during this period. Human activities affect many lakes in the world. These lakes may play an important part in the global carbon cycle through their influence on CO2 exchange between freshwater and the atmosphere. Biogeochemical changes and processes in these systems have important implications for future changes in aquatic carbonate systems on land.  相似文献   
164.
We determined the mineralogical and petrological characteristics of ultramafic rocks dredged from two oceanic core complexes: the Mado Megamullion and 23°30′N non-transform offset massif, which are located within the Shikoku back-arc basin in the Philippine Sea. The ultramafic rocks are strongly serpentinized, but can be classified as harzburgite/lherzolite or dunite, based on relict primary minerals and their pseudomorphs. Strongly elongated pyroxene porphyroclasts with undulatory extinction indicate high-temperature (≥700 °C) strain localization on a detachment fault within the upper mantle at depths below the brittle–viscous transition. During exhumation, the peridotites underwent impregnation by magmatic or hydrothermal fluids, lizardite/chrysotile serpentinization at ≤300 °C, antigorite crystallization, and silica metasomatism that formed talc. These features indicate that the detachment fault zones formed a fluid pathway and facilitated a range of fluid–peridotite interactions.  相似文献   
165.
In integrated systems for accurate positioning, which consist of GNSS, INS, and other sensors, the GNSS positioning accuracy has a decisive influence on the performance of the entire system and thus is very important. However, GNSS usually exhibits poor positioning results in urban canyon environments due to pseudorange measurement errors caused by multipath creation, which leads to performance degradation of the entire positioning system. For this reason, in order to maintain the accuracy of an integrated positioning system, it is necessary to determine when the GNSS positioning is accurate and which satellites can have their pseudorange measured accurately without multipath errors. Thus, the objective of our work is to detect the multipath errors in the satellite signals and exclude these signals to improve the positioning accuracy of GNSS, especially in an urban canyon environment. One of the previous technologies for tackling this problem is RAIM, which checks the residual of the least square and identifies the suspicious satellites. However, it presumes a Gaussian measurement error that is more common in an open-sky environment than in the urban canyon environment. On the other hand, our proposed method can estimate the size of the pseudorange error directly from the information of altitude positioning error, which is available with an altitude map. This method can estimate even the size of non-Gaussian error due to multipath in the urban canyon environment. Then, the estimated pseudorange error is utilized to weight satellite signals and improve the positioning accuracy. The proposed method was tested with a low-cost GNSS receiver mounted on a test vehicle in a test drive in Nagoya, Japan, which is a typical urban canyon environment. The experimental result shows that the estimated pseudorange error is accurate enough to exclude erroneous satellites and improve the GNSS positioning accuracy.  相似文献   
166.
Evaluation of the carbon, water, and energy balances in evergreen coniferous forests requires accurate in situ and satellite data regarding their spatio-temporal dynamics. Daily digital camera images can be used to determine the relationships among phenology, gross primary productivity (GPP), and meteorological parameters, and to ground-truth satellite observations. In this study, we examine the relationship between seasonal variations in camera-based canopy surface indices and eddy-covariance-based GPP derived from field studies in an Alaskan open canopy black spruce forest and in a Japanese closed canopy cedar forest. The ratio of the green digital number to the total digital number, hue, and GPP showed a bell-shaped seasonal profile at both sites. Canopy surface images for the black spruce forest and cedar forest mainly detected seasonal changes in vegetation on the floor of the forest and in the tree canopy, respectively. In contrast, the seasonal cycles of the ratios of the red and blue digital numbers to the total digital numbers differed between the two sites, possibly due to differences in forest structure and leaf color. These results suggest that forest structural characteristics, such as canopy openness and seasonal forest-floor changes, should be considered during continuous observations of phenology in evergreen coniferous forests.  相似文献   
167.
Collaborations amongst researchers from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Japan and the International Arctic research Center (IARC), University of Alaska Fairbanks (UAF), U.S., have been on-going since 1998 and resulted in a great number and magnitude of accomplishments that could not have been achieved without this close partnership. The Arctic represents an important region for Japan, the U.S. and the world, and many opportunities and challenges press for immediate understanding to enable wise decisions and policy making. We have many common interests and our countries face many common problems and goals. Addressing the tremendous scientific challenges of the Arctic requires such massive investment of manpower and resources that sharing efforts, data and working together on expeditions are in our mutual best interests.This issue presents a compilation of selected results on recent analyses conducted in the five-year (2009–2014) research term related to observational studies, model development and remote sensing applications of the Arctic Ocean, adjacent marginal seas, and the surrounding terrestrial regions. All of these studies are intended to provide a better understanding of how individual components and processes interact to form a complex and dynamic arctic system. Through these collaborations, Japanese and UAF Arctic researchers can achieve our goals of developing a quantitative understanding of the Arctic System.  相似文献   
168.
Here, the year 2011 characteristics of evapotranspiration and the energy budget of a black spruce forest underlain by permafrost in interior Alaska were explored. Energy balance was nearly closed during summer, and the mean value of the daily energy balance ratio (the ratio of turbulent energy fluxes to available energy) from June to August was 1.00, though a large energy balance deficit was observed in the spring. Such a deficit was explained partly by the energy consumed by snowmelt. Ground heat flux played an important role in the energy balance, explaining 26.5% of net radiation during summer. The mean daily evapotranspiration of this forest during summer was 1.37 mm day?1 – considered typical for boreal forests. The annual evapotranspiration and sublimation yielded 207.3 mm year?1, a value much smaller than the annual precipitation. Sublimation accounted for 8.8% (18.2 mm year?1) of the annual evapotranspiration and sublimation; thus, the sublimation is not negligible in the annual water balance in boreal forests. The daytime average decoupling coefficient was very small, and the mean value was 0.05 during summer. Thus, evapotranspiration from this forest was mostly explained by the component from the dryness of the air, resulting from the aerodynamically rough surface of this forest.  相似文献   
169.
Compression behaviors of two Al-rich phases in the lower mantle, hexagonal new aluminum-rich (NAL) phase and its high-pressure polymorph Ca-ferrite-type (CF) phase, were examined for identical Na0.4Mg0.6Al1.6Si0.4O4 (40?% NaAlSiO4–60?% MgAl2O4) composition. The volumes of the NAL and CF phases were obtained at room temperature up to 31 and 134?GPa, respectively, by a combination of laser-annealed diamond-anvil cell techniques and synchrotron X-ray diffraction measurements. Fitting of the third-order Birch–Murnaghan equation of state to such pressure–volume data yields bulk modulus K 0?=?199(6) GPa at 1?bar and its pressure derivative K 0′?=?5.0(6) for the NAL phase and K 0?=?169(5) GPa and K 0′?=?6.3(3) for the CF phase. These results indicate that the bulk modulus increases from 397 to 407 GPa across the phase transition from the NAL to CF phase at 43 GPa, where the NAL phase completely transforms into the CF phase on Na0.4Mg0.6Al1.6Si0.4O4. Density also increases by 2.1?% across the phase transition.  相似文献   
170.
This paper describes an approach to simulate a seven-tier stack consisting of scaled model of a 20 ft ISO freight container and its linking connectors, denominated twist locks, subjected to dynamical load induced by its base. The physical (dimensions, mass, and moments of inertia) and structural (longitudinal, transversal and torsional stiffness) characteristics of the scaled models were decided based on two dimensionless numbers: ratios between gravity force and inertia force, and elastic force divided by inertia force, through experimental and numerical analysis. A series of experiments with controlled parameters were performed using a shaking table test to understand the effects of each variable in the container stack dynamics and present enough data to validate the numerical model. The results of this study indicate that the numerical model built is a promising tool for further study. Moreover, the model is able to predict conditions close to real situations faced by container stacks while storage on a ship's deck.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号