首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   7篇
测绘学   1篇
大气科学   3篇
地球物理   34篇
地质学   27篇
海洋学   54篇
天文学   47篇
综合类   1篇
自然地理   18篇
  2022年   1篇
  2020年   1篇
  2018年   3篇
  2017年   5篇
  2016年   15篇
  2015年   3篇
  2014年   3篇
  2013年   7篇
  2012年   9篇
  2011年   11篇
  2010年   7篇
  2009年   8篇
  2008年   9篇
  2007年   8篇
  2006年   5篇
  2005年   9篇
  2004年   9篇
  2003年   11篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   6篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
121.
The energy spectrum of the diffuse component of cosmic X-rays was measured with rocket-borne scintillation counters. Subtracting the environmental background unambiguously by means of the shutter method, the absolute values of the cosmic X-ray flux are obtained in a few keV band from 10 to 40 keV. The result indicates that the energy spectrum sharply changes its slope around 20–30 keV. Some trial functions for the spectrum are compared with our result; among them a thermal bremsstrahlung spectrum and a two-slope power law spectrum seem to fit very well. The former needs, however, another origin of X-rays in the lower and higher energy regions. ‘Sharpness’ of the break in the case of the latter is discussed, including a data point in high energy side from a balloon experiment. The acceptable range of the spectral index in the high energy side is 2.3–2.6, that of the break energy is 20–30 keV and the corresponding transition width is smaller than 50 keV, if the confidence level is to be better than 5%. Non-thermal X-ray generation due to the inverse Compton effect does not reproduce the X-ray spectrum, even if the electron spectrum shows a sharp break. Bremsstrahlung with the non-thermal electrons or protons with a sharp cut in the low energy side of the spectrum can reproduce our result, though such a cut seems unrealistic. Our result may suggest that current theories on the origin of the diffuse X-rays have to be revised.  相似文献   
122.
This paper describes the petrological features and the ages of rock fractures filled mainly with carbonates at coastal outcrops of Yakushima Island, Japan. Microscopic observation and geochemical analysis were used to investigate the petrological features and the compositions of the fracture fillings. In addition, AMS 14C dating was also performed to estimate the ages of them. Microscopic study indicated that the fracture fillings contain not only cementing materials but also lithic fragments from host rock and bioclasts. SEM observation showed that the cements exhibit the characteristic textures of beachrocks. The cements were identified as Mg-calcite from XRD analysis. It was also observed from geochemical analysis that there were at least two stages of precipitation within the fractures. In addition, AMS 14C dating for seventeen samples of fracture fillings showed that the ages range from 2,460 to 5,130 years BP which is found to be younger than that of the uplifted coral at Yakushima Island (approximately 5,300–5,600 years BP). The results suggest that the fractures were solidified after the coral was uplifted.  相似文献   
123.
We conducted a near-infrared imaging survey of 11 young dwarfs in the Pleiades cluster using the Subaru Telescope and the near-infrared coronagraph imager. We found ten faint point sources,with magnitudes as faint as 20 mag in the K-band,with around seven dwarfs.Comparison with the Spitzer archive images revealed that a pair of the faint sources around V 1171 Tau is very red in infrared wavelengths,which indicates very low-mass young stellar objects.However,the results of our follow-up proper motion measure...  相似文献   
124.
To improve the scaling parameter controlling the impact crater formation in the strength regime, we conducted impact experiments on sintered snow targets with the dynamic strength continuously changed from 20 to 200 kPa, and the largest crater size formed on small icy satellites was considered by using the revised scaling parameter. Ice and snow projectiles were impacted on a snow surface with 36% porosity at an impact velocity from 31 m s−1 to 150 m s−1. The snow target was sintered at the temperature from −5 °C to −18 °C, and the snow dynamic strength was changed with the sintering duration at each temperature. We found that the mass ejected from the crater normalized by the projectile mass, πV, was related to the ratio of the dynamic strength to the impact pressure, , as follows: , where the impact pressure was indicated by P = ρtC0tvi/2 with the target density of ρt, when the impact velocity, vi, was much smaller than the bulk sound velocity C0t (typically 1.8 km s−1 in our targets). The ratio of the largest crater diameter to the diameter of the target body, dmax/D, was estimated by calculating the crater diameter at the impact condition for catastrophic disruption and then compared to the observed dmax/D of jovian and saturnian small satellites, in order to discuss the formation condition of these large dmax/D in the strength regime.  相似文献   
125.
Laboratory impact experiments were conducted for gypsum-glass bead targets simulating the parent bodies of ordinary chondrites. The effects of the chondrules included in the parent bodies on impact disruption were experimentally investigated in order to determine the impact conditions for the formation of rubble-pile bodies after catastrophic disruption. The targets included glass beads with a diameter ranging from 100 μm to 3 mm and the volume fraction was 0.6, similar to that of ordinary chondrites, which is about 0.65-0.75. Nylon projectiles with diameters of 10 mm and 2 mm were impacted at 60-180 m s−1 by a single-stage gas gun and at 4 km s−1 by a two-stage light gas gun, respectively. The impact strength of the gypsum-glass bead target was found to range from 56 to 116 J kg−1 depending on the glass bead size, and was several times smaller than that of the porous gypsum target, 446 J kg−1 in low-velocity collisions. The impact strengths of the 100 μm bead target and the porous gypsum target strongly depended on the impact velocity: those obtained in high-velocity collisions were several times greater than those obtained in low-velocity collisions. The velocities of fragments ejected from two corners on the impact surface of the target, measured in the center of the mass system, were slightly dependent on the target materials, irrespective of impact velocity. These results suggest that chondrule-including planetesimals (CiPs) can reconstruct rubble-pile bodies in catastrophic disruptions at the size of the planetesimal smaller than that of planetesimals without chondrules.  相似文献   
126.
To study the accretional growth of rimmed chondrules and their agglomerates in the solar nebula, we measured the restitution coefficients, ε, and the sticking velocities to a porous silica layer, vc, by impacting the silica layer with a glass ball at velocities from 0.1 to 80 m s?1. We used a porous silica layer covering a basalt block with thicknesses ranging from 1/5 of the glass ball radius to equal to the glass ball radius as a rimmed chondrule analogue, and the porosity of the silica layer was set to be 70%, 80%, 85%, and 90%. Collisional experiments were conducted by means of the free fall method or by the use of a spring gun or a gas gun, allowing us to vary the impact velocity. We used a laser displacement meter to estimate the impact and rebound velocities as well as the acceleration during the collision at impact velocities below 1 m s?1. As a result, the sticking velocity, vc, of 90%- and 85%- porosity layers with a thickness equal to 1/2 of the glass ball diameter was 0.44 and 2.4 m s?1, respectively. On the other hand, we found a distinct barrier to sticking for smaller-porosity layers: the silicate layer with a porosity smaller than 80% never exhibited sticking at any impact velocity below 1 m s?1. Instead, we observed a rebound effect with restitution coefficients larger than 0.2. In the case of a silica layer with a porosity smaller than 80%, we observed the sub-sticking condition defined by ε < 0.1 at velocities extending from 5 m s?1 to 70 m s?1.  相似文献   
127.
To clarify the effect of a surface regolith layer on the formation of craters in bedrock, we conducted impact-cratering experiments on two-layered targets composed of a basalt block covered with a mortar layer. A nylon projectile was impacted on the targets at velocities of 2 and 4 km s?1, and we investigated the crater size formed on the basalt. The crater size decreased with increased mortar thickness and decreased projectile mass and impact velocity. The normalized crater volume, πV, of all the data was successfully scaled by the following exponential equation with a reduction length λ0: πV=b0πY-b1exp(-λ/λ0), where λ is the normalized thickness T/Lp, T and Lp are the mortar thickness and the projectile length, respectively, b0 and b1 are fitted parameters obtained for a homogeneous basalt target, 10?2.7±0.7 and ?1.4 ± 0.3, respectively, and λ0 is obtained to be 0.38 ± 0.03. This empirical equation showing the effect of the mortar layer was physically explained by an improved non-dimensional scaling parameter, πY1, defined by πY1=Y/(ρtup2), where up was the particle velocity of the mortar layer at the boundary between the mortar and the basalt. We performed the impact experiments to obtain the attenuation rate of the particle velocity in the mortar layer and derived the empirical equation of upvi=0.50exp-λ1.03, where vi is the impact velocity of the projectile. We propose a simple model for the crater formation on the basalt block that the surface mortar layer with the impact velocity of up collides on the surface of the basalt block, and we confirmed that this model could reproduce our empirical equation showing the effect of the surface layer on the crater volume of basalt.  相似文献   
128.
Mid-infrared images of almost the entire Venus nightside hemisphere obtained by the Longwave Infrared Camera (LIR) onboard Akatsuki on December 9 and 10, 2010 reveal that the brightness temperature of the cloud-top ranges from 237 K in the cold polar collars to 243 K in the equatorial region, significantly higher than the values obtained by Venera 15. Other characteristic features of the temperature distributions observed are zonal belt structures seen in the middle and low latitudes and patchy temperature structures or quasi-periodic streaks extending in a north–south direction in the northern middle latitudes and southern low latitudes.  相似文献   
129.
We present stellar parameters and abundances of 15 elements (Na, Mg, A1, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Y and Ba) for 23 field RR Lyrae variables based on high-resolution (R ~ 60 000) and high signal-to-noise (S/N~ 200) spectra obtained using the High Dispersion Spectrograph on the Subaru Telescope. Six stars in the sample have more than one spectrum observed at different pulsation phases. The derived abundance ratios of [X/Fe] for 14 elements (except for Ba) do not vary during the pulsation cycle. An interesting curve of [Ba/Fe] versus phase is detected for the first time and it shows decreasing [Ba/Fe] with increasing temperature at a given metallicity. Combining with data in the literature, abundances of most RR Lyrae stars as a function of [Fe/H] follow the same trends as those of dwarf stars, but [Sc/Fe] and [Y/Fe] ratios of RR Lyrae stars at solar metallicity are lower than those of dwarf stars. The kinematics of RR Lyrae stars indicate that three comparatively metal-rich RR Lyrae stars might originate from the thick disk and they show higher [a/Fe] ratios than RR Lyrae stars with thin disk kinematics. Among 23 RR Lyrae stars, two special objects are found with abnormal abundances; TV Lib has high [a/Fe], [Sc/Fe], [Y/Fe] and [Ba/Fe] ratios while TW Her has solar [a/Fe] but significantly lower [Sc/Fe], [Y/Fe] and [Ba/Fe] ratios as compared with other RR Lyrae stars.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号