首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   8篇
测绘学   1篇
大气科学   3篇
地球物理   23篇
地质学   20篇
海洋学   23篇
天文学   31篇
综合类   1篇
自然地理   9篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   9篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   6篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   6篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
81.
Tropical cyclones expose river basins to heavy rainfall and flooding, and cause substantial soil erosion and sediment transport. There is heightened interest in the effects of typhoon floods on river basins in northeast Japan, as the migration of radiocaesium‐bearing soils contaminated by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident will affect future radiation levels. The five main catchments surrounding FDNPP are the Odaka, Ukedo, Maeda, Kuma and Tomioka basins, but little quantitative modelling has been undertaken to identify the sediment redistribution patterns and controlling processes across these basins. Here we address this issue and report catchment‐scale modelling of the five basins using the GETFLOWS simulation code. The three‐dimensional (3D) models of the basins incorporated details of the geology, soil type, land cover, and used data from meteorological records as inputs. The simulation results were checked against field monitoring data for water flow rates, suspended sediment concentrations and accumulated sediment erosion and deposition. The results show that the majority of annual sediment migration in the basins occurs over storm periods, thus making typhoons the main vectors for redistribution. The Ukedo and Tomioka basins are the most important basins in the region in terms of overall sediment transport, followed by the other three basins each with similar discharge amounts. Erosion is strongly correlated with the underlying geology and the surface topography in the study area. A low permeability Pliocene Dainenji formation in the coastal area causes high surface water flow rates and soil erosion. Conversely, erosion is lower in an area with high permeability granite basement rocks between the Hatagawa and Futaba faults in the centre of the study area. Land cover is also a factor controlling differences in erosion and transport rates between forested areas in the west of the study area and predominantly agricultural areas towards the east. The largest sediment depositions occur in the Ogaki and Takigawa Dams, at the confluence of the Takase and Ukedo Rivers, and at the Ukedo River mouth. Having clarified the sediment redistribution patterns and controlling processes, these results can assist the ongoing task of monitoring radioactive caesium redistribution within Fukushima Prefecture, and contribute to the design and implementation of measures to protect health and the environment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
82.
Ambient concentrations of polycyclic aromatic hydrocarbons (PAHs) were measured in Helsinki (Finland). Particle mass size distributions were obtained with a cascade impactor (12 stages) with glass fibre filters as substrates. Simultaneously with the impactor measurements, particulate and gaseous PAHs were collected on a quartz filter and XAD-2 adsorbent, respectively, for evaluation of gas-partition coefficients. Samples were analysed for PAHs by on-line coupled supercritical fluid extraction — liquid chromatography — gas chromatography — mass spectrometry. The impactor results showed that most of the PAHs in Helsinki urban area were concentrated in fine particles (<2.5 μm diameter) with unimode peak at about 1 μm. The results were comparable with the number distribution measured with a differential mobility particle sizer. Total amounts of PAHs (gas + particle) varied from 15 (acenaphthylene) to 1990 (fluorene) pg/m3. The PAHs lighter than 202 amu (pyrene and fluoranthene) were exclusively in gas phase, whereas those heavier than 202 amu were mostly associated with particles. A plot of the partition coefficients (logKp) versus the temperature dependent sub-cooled vapour pressures (logp L 0 ) showed a gradient of −0.66, which deviated from equilibrium state (gradient = −1).  相似文献   
83.
To study the accretional growth of rimmed chondrules and their agglomerates in the solar nebula, we measured the restitution coefficients, ε, and the sticking velocities to a porous silica layer, vc, by impacting the silica layer with a glass ball at velocities from 0.1 to 80 m s?1. We used a porous silica layer covering a basalt block with thicknesses ranging from 1/5 of the glass ball radius to equal to the glass ball radius as a rimmed chondrule analogue, and the porosity of the silica layer was set to be 70%, 80%, 85%, and 90%. Collisional experiments were conducted by means of the free fall method or by the use of a spring gun or a gas gun, allowing us to vary the impact velocity. We used a laser displacement meter to estimate the impact and rebound velocities as well as the acceleration during the collision at impact velocities below 1 m s?1. As a result, the sticking velocity, vc, of 90%- and 85%- porosity layers with a thickness equal to 1/2 of the glass ball diameter was 0.44 and 2.4 m s?1, respectively. On the other hand, we found a distinct barrier to sticking for smaller-porosity layers: the silicate layer with a porosity smaller than 80% never exhibited sticking at any impact velocity below 1 m s?1. Instead, we observed a rebound effect with restitution coefficients larger than 0.2. In the case of a silica layer with a porosity smaller than 80%, we observed the sub-sticking condition defined by ε < 0.1 at velocities extending from 5 m s?1 to 70 m s?1.  相似文献   
84.
A probabilistic method of calculating the occurrence of oxygen-depleted water within a combined hydrothermal and water quality model was presented in this paper to investigate the environmental impact of eutrophication on the living resources. The method was applied to an eutrophicated shallow coastal bay in western Japan, where the occurrence of red tides at the water surface and the onset of bottom hypoxic waters are observed every summer. Both meteorology and freshwater inflow contribute to the development of stratification of the bay, thus limiting the dissolved oxygen supply to bottom waters. The resulting hydrodynamics enhances the development of oxygen-depleted bottom waters by transporting organic matter produced by algal blooms to the inner bay, where it decomposes and exerts high SOD. During August, about 60% of the inner bay is hypoxic for prolonged durations and as a result most of the benthic biota and fish die. The method used here is a very useful and informative way to evaluate the spatial and temporal damage and severity caused by hypoxia on living resources. Moreover, the model results agreed very well with the observed hydrodynamics, thermal structure and water quality data of the stratified bay. The model can be used for other lakes and bays where knowledge of temperature and density stratification is important for assessing water quality.  相似文献   
85.
To improve the scaling parameter controlling the impact crater formation in the strength regime, we conducted impact experiments on sintered snow targets with the dynamic strength continuously changed from 20 to 200 kPa, and the largest crater size formed on small icy satellites was considered by using the revised scaling parameter. Ice and snow projectiles were impacted on a snow surface with 36% porosity at an impact velocity from 31 m s−1 to 150 m s−1. The snow target was sintered at the temperature from −5 °C to −18 °C, and the snow dynamic strength was changed with the sintering duration at each temperature. We found that the mass ejected from the crater normalized by the projectile mass, πV, was related to the ratio of the dynamic strength to the impact pressure, , as follows: , where the impact pressure was indicated by P = ρtC0tvi/2 with the target density of ρt, when the impact velocity, vi, was much smaller than the bulk sound velocity C0t (typically 1.8 km s−1 in our targets). The ratio of the largest crater diameter to the diameter of the target body, dmax/D, was estimated by calculating the crater diameter at the impact condition for catastrophic disruption and then compared to the observed dmax/D of jovian and saturnian small satellites, in order to discuss the formation condition of these large dmax/D in the strength regime.  相似文献   
86.
The Hakusan volcano, central Japan, is located in a region where two subducting plates (the Pacific Plate and the Philippine Sea Plate) overlap near the junction of four plates adjacent to the Japanese Islands (the Pacific Plate, the Philippine Sea Plate, the Eurasia Plate, and the North American Plate). The Hakusan volcano consists of products from four major volcanic episodes: Kagamuro, Ko‐hakusan, and Shin‐Hakusan I and II. To date the eruption events of the Hakusan volcano we applied thermoluminescence and fission track methods. 238U(234U)–230Th disequilibrium and 206Pb/238U methods were applied to date the zircon crystallization ages for estimating the magma residence time before the eruptions. The eruption ages we obtained are ca 250 ka for Kagamuro, ca 100 ka and ca 60 ka for Ko‐Hakusan, ca 50 ka for Shin‐Hakusan I, and <10 ka for Shin‐Hakusan II. They are concordant with previous reports based on K–Ar dating. Some of the pyroclastic rocks, possibly originating from Shin‐Hakusan II activities, are dated to be ca 36 ka or 50 ka, and belong to the Shin‐Hakusan I activity. The zircon crystallization ages show several clusters prior to eruption. The magma residence time was estimated for each volcanic activity by comparing the major crystallization events and eruption ages, and we found a gradual decrease from ca. 500 ky for the Kagamuro activity to ca. 5 ky for the Shin‐Hakusan II activity. This decrease in residence time may be responsible for the decrease in volume of erupted material estimated from the current topography of the region. The scale of volcanic activity, which was deduced from the number of crystallized zircons, is more or less constant throughout the Hakusan volcanic activity. Therefore, the decrease in magma residence time is most likely the result of stress field change.  相似文献   
87.
This paper describes the petrological features and the ages of rock fractures filled mainly with carbonates at coastal outcrops of Yakushima Island, Japan. Microscopic observation and geochemical analysis were used to investigate the petrological features and the compositions of the fracture fillings. In addition, AMS 14C dating was also performed to estimate the ages of them. Microscopic study indicated that the fracture fillings contain not only cementing materials but also lithic fragments from host rock and bioclasts. SEM observation showed that the cements exhibit the characteristic textures of beachrocks. The cements were identified as Mg-calcite from XRD analysis. It was also observed from geochemical analysis that there were at least two stages of precipitation within the fractures. In addition, AMS 14C dating for seventeen samples of fracture fillings showed that the ages range from 2,460 to 5,130 years BP which is found to be younger than that of the uplifted coral at Yakushima Island (approximately 5,300–5,600 years BP). The results suggest that the fractures were solidified after the coral was uplifted.  相似文献   
88.
Porosity is one of the most important physical properties in the rheology of small icy satellites composed of ice–silicate mixtures. Deformation experiments involving ice and 1 μm silica bead mixtures were conducted to clarify the effect of porosity on the flow law of ice–silica mixtures. Mixtures with silica mass contents of 0, 30, and 50 wt.% were used for the experiments, and the porosity was changed from 0% to 25% in each mixture. The temperature ranged from −10 to −20 °C, and the strain rate was changed from 1.2 × 10−6 to 4.2 × 10−4 s−1. As a result, it was found that the ice–silica mixtures deformed plastically, and that the relationship between the maximum stress, σmax, on the stress–strain curve and the applied strain rate, , could be described by the following flow law: . The mixture became softer as the porosity or silica mass content increased, and the stress exponent n and activation energy Q were independent of porosity, depending only on the silica mass content. Furthermore, the parameter A0 could be written as A0 = B(1 − ?)α, where ? is the porosity. The constants B and α also depended only on the silica mass content, and they increased with the increase in this content. The Maxwell relaxation time was calculated in order to estimate the conditions for topographic relaxation of icy satellites, and it was found that topographic relaxation occurred at temperatures higher than 160 K in the case of icy satellites with mean radii of 200 km.  相似文献   
89.
Abstract— In order to study the catastrophic disruption of porous bodies such as asteroids and planetesimals, we conducted several impact experiments using porous gypsum spheres (porosity: 50%). We investigated the fragment mass and velocity of disrupted gypsum spheres over a wide range of specific energies from 3 times 103 J/kg to 5 times 104 J/kg. We compared the largest fragment mass (m1/Mt) and the antipodal velocity (Va) of gypsum with those of non‐porous materials such as basalt and ice. The results showed that the impact strength of gypsum was notably higher than that of the non‐porous bodies; however, the fragment velocity of gypsum was slower than that of the non‐porous bodies. This was because the micro‐pores dispersed in the gypsum spheres caused a rapid attenuation of shock pressure in them. From these results, we expect that the collisional disruption of porous bodies could be significantly different from that of non‐porous bodies.  相似文献   
90.
Several models simulate watershed areas by delineating hillslopes. Hillslope size depends on the length of stream tributaries, which are affected by the drainage area threshold (DAT). There is no universal approach to identify the appropriate DAT. Therefore, a method to derive the DAT and a series of steps to delineate a watershed into smaller sizes were proposed in this study, and the impact of hillslope size on slope gradient estimation was investigated. The DAT obtained in this study was smaller than that obtained using other methods, resulting in a shorter length of the tributaries. Dividing these tributaries into equal short segments and using them to delineate the study area reduced the size of the hillslope. The results revealed that the shorter the length of the tributaries, the smaller the hillslope size. The accuracy of gradient estimation increased when the size of the hillslope was reduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号