首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   2篇
  国内免费   3篇
大气科学   5篇
地球物理   14篇
地质学   13篇
海洋学   51篇
天文学   18篇
自然地理   4篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2010年   5篇
  2009年   1篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   9篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1983年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1971年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
51.
Two kinds of nonlinear constraints, not previously studied in oceanography, have been adopted with the Preconditioned Optimizing Utility for Large-dimensional analyses (POpULar) in a three-dimensional oceanic variational analysis in the equatorial Pacific. One is the constraint for the variational Quality Control (QC) procedure and the other is used to avoid density and temperature inversions. Estimation of the large heat content anomaly in the upper ocean related to El Nino and La Nina phenomena is improved with the variational QC. For example, it prevents unusual but correct observation data on the thermocline deepening in the 1997/98 El Nino from being ignored. As a result, it improves the temperature field estimation in the eastern equatorial Pacific. The constraint for avoiding inversions prevents the low salinity layer at the surface and the barrier layer in the eastern equatorial Pacific in the El Nino period from being destroyed by the convective adjustment procedure performed after minimizing the cost function. Incorporating nonlinear constraints in variational analyses is thus a strong candidate for increasing the accuracy of analysis.  相似文献   
52.
We investigated the seasonal variability of free alkaline phosphatase activity in seawater and alkaline phosphatase hydrolysable phosphorus (APHP) at 3 stations in Hiroshima Bay using alkaline phosphatase extracted from the dinoflagellates Alexandrium tamarense and Gymnodinium catenatum. The dissolved inorganic phosphorus (DIP) was lower than 1 μM in all samples; the lowest values were in May. The amount of APHP was high at the surface and bottom waters of all stations in May, showing DIP-depleted conditions. In August and November, the amount of APHP was much less than the amount of APHP in May, indicating that the availability of dissolved organic phosphorus (DOP) for these species was low and/or uptake during the dinoflagellate blooming might have occurred in the area. The results obtained from short-term variations of AP activity might suggest that the growth of dinoflagellates in this season may be partly supported by the AP produced by other diatoms.  相似文献   
53.
Changes in the limnological features of a typical meromictic lake, Lake Suigetsu, from 1926 to 1967 are summarized. Until 1934, the lake was stratified due to the balance between the flushing of fresh water and the intrusion of salt water through a canal by which the lake was connected to a coastal polyhaline lake. Total chloride content of the lake had been within the range of 100–230×103 tons and the thermal stratification had been well developed. In 1934, another channel was constructed, by which the lake was connected to another polyhaline coastal lake. This resulted in the influx of large quantities of salt water (maximum total chloride content of the lake: 790×103tons), and characteristics of stratification were altered. In the data after 1951, a two-layered system was re-established (total chloride content of the lake: 470–620×103tons), and distinct stratification began to appear.  相似文献   
54.
The Communications Research Laboratory (CRL) has been developing high-frequency ocean surface radars (HFOSRs). The CRL dual-site HFOSR system can clarify the distribution of surface currents with a nominal range of 50 km. This paper presents a theoretical and experimental analysis of the measurement error of the current vector obtained by the CRL HFOSR system, using a comparison of instantaneous current vectors acquired by the HFOSR system and current meters moored at a depth of 2 m, taking account of the vertical current shear. The theoretical analysis shows that the probability distribution of the measurement error of the current vector forms concentric ellipses at a spatial scale that depends on the RMS measurement error of radial current velocity and with an aspect ratio that depends only on the azimuthal difference of the radar beams. When the azimuthal difference is a right angle, the measurement error of the current vector is at a minimum. A comparison between instantaneous current vectors measured by the CRL HFOSR system and moored current meters shows that the distribution of the difference vector between the radar current and the meter current agrees well with the theoretical measurement error of the current vector and that the RMS of difference vector length is about 10 cm s–1 while the azimuthal difference between two radar beams is between 45 and 135 degrees. The accuracy of current measurement by the dual-site HFOSR system is therefore considered to be less than 10 cm s–1 in this range of azimuthal difference. The theoretical analysis will be applicable for a wider range of the azimuthal difference of the radar beams.  相似文献   
55.
The seasonal variation of the Kuroshio transport south of Japan has been investigated using the results of an assimilation model. Annual and semiannual variations of the transport and dynamic depth anomaly are reconstructed by CEOF (complex orthogonal empirical function) analysis. In the basin west of the Izu-Ogasawara Ridge, the annual component of the variation propagates westward with the phase speed of the long Rossby wave associated with the first baroclinic mode. The variation also shows a similar tendency to that reproduced in a wind-driven, two-layer model with a ridge. This suggests that the annual variation revealed in the assimilation model is associated with the baroclinic first mode of motion excited above the Izu-Ogasawara Ridge. Furthermore, it is found that both the semiannual component and the annual component are important members determining the seasonal variation of the Kuroshio transport south of Japan. The semiannual component is revealed as a double gyre pattern in the basin west of the Izu-Ogasawara Ridge. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
56.
Studies extending over three decades have concluded that the current orientation of the martian rotation pole is unstable. Specifically, the gravitational figure of the planet, after correction for a hydrostatic form, has been interpreted to indicate that the rotation pole should move easily between the present position and a site on the current equator, 90° from the location of the massive Tharsis volcanic province. We demonstrate, using general physical arguments supported by a fluid Love number analysis, that the so-called non-hydrostatic theory is an inaccurate framework for analyzing the rotational stability of planets, such as Mars, that are characterized by long-term elastic strength within the lithosphere. In this case, the appropriate correction to the gravitational figure is the equilibrium rotating form achieved when the elastic lithospheric shell (of some thickness LT) is accounted for. Moreover, the current rotation vector of Mars is shown to be stable when the correct non-equilibrium theory is adopted using values consistent with recent, independent estimates of LT. Finally, we compare observational constraints on the figure of Mars with non-equilibrium predictions based on a large suite of possible Tharsis-driven true polar wander (TPW) scenarios. We conclude, in contrast to recent comparisons of this type based on a non-hydrostatic theory, that the reorientation of the pole associated with the development of Tharsis was likely less than 15° and that the thickness of the elastic lithosphere at the time of Tharsis formation was at least ∼50 km. Larger Tharsis-driven TPW is possible if the present-day gravitational form of the planet at degree 2 has significant contributions from non-Tharsis loads; in this case, the most plausible source would be internal heterogeneities linked to convection.  相似文献   
57.
We extend previous work on the global tectonic patterns generated by despinning with a self-consistent treatment of the isotropic despinning contraction that has been ignored. We provide simple analytic approximations that quantify the effect of the isotropic despinning contraction on the global shape and tectonic pattern. The isotropic despinning contraction of Mercury is ∼93 m (T/1 day)−2, where T is the initial rotation period. If we take into account both the isotropic contraction and the degree-2 deformations associated with despinning, the preponderance of compressional tectonic features on Mercury’s surface requires an additional isotropic contraction ?1 km (T/1 day)−2, presumably due to cooling of the interior and growth of the solid inner core. The isotropic despinning contraction of Iapetus is ∼9 m (T/16 h)−2, and it is not sensitive to the presence of a core or the thickness of the elastic lithosphere. The tectonic pattern expected for despinning, including the isotropic contraction, does not explain Iapetus’ ridge. Furthermore, the ridge remains unexplained with the addition of any isotropic compressional stresses, including those generating by cooling.  相似文献   
58.
 Soil wetness, in both its global distribution and the seasonal change, has been mainly estimated by the water balance approach using the bucket model which regards the soil wetness as soil moisture. The soil moisture data of Mintz and Serafini is one of the representatives examples, however, this method has problems since it does not incorporate the effects of flooding, snow accumulation on the ground, and so on. In this study, we use the Amazon and Volga river basin to carry out a case study to evaluate these problems. In the Amazon river basin, the annual range of the entire terrestrial water storage, about 400 mm, can be mainly explained by the rising and falling of the water level, and flooding around river channels, although soil moisture data of Mintz and Serafini is almost constant throughout the year. In the Volga river basin, snow accumulates on the ground producing 80 mm of water equivalent during winter, however the soil moisture data of Mintz and Serafini is almost saturated in winter. Received: 30 October 1996 / Accepted: 4 June 1997  相似文献   
59.
We investigate pure luminosity evolution models for early-type (elliptical and S0) galaxies (i.e. no number density change or morphological transition), and examine whether these models are consistent with observed number counts in the B , I and K bands, and redshift distributions of two samples of faint galaxies selected in the I and K bands. The models are characterized by the star formation time-scale τ SF and the time t gw when the galactic wind starts to blow, in addition to several other conventional parameters. We find that the single-burst model ( τ SF=0.1 Gyr and t gw=0.353 Gyr), which is known to reproduce the photometric properties of early-type galaxies in clusters, is inconsistent with the redshift distributions of early-type galaxies in the field environment, owing to overpredictions of the number of galaxies at z ≳1.4 even with strong extinction which is at work until t gw. In order for dust extinction to be more effective, we treat τ SF and t gw as free parameters, and find that models with τ SF≳0.5 Gyr and t gw>1.0 Gyr can be made consistent with both the observed redshift distributions and the number counts, if we introduce strong extinction [ E ( B − V )≥1 as a peak value]. These results suggest that early-type galaxies in the field environment do not have the same evolutionary history as described by the single-burst model.  相似文献   
60.
To study tsunami soliton fission and split wave-breaking, an undistorted experiment was carried out which investigated tsunami shoaling on a continental shelf. Three models of the continental shelf were set up in a 205-m long 2-dimensional flume. Each shelf model was 100 m, long with slopes of either 1/100, 1/150, or 1/200. Water surface elevations were measured across the flume, including a dense cluster of wave gages installed around the point of wave-breaking. We propose new methods for calculating wave velocity and the wave-breaking criterion based on our interpretation of time series data of water surface elevation. At the point of wave-breaking, the maximum slope of water surface is between 20 to 50 deg., while the ratio of surface water particle horizontal velocity to wave velocity is from 0.5 to 1.2. The values determined by our study are larger than what has been reported by other researchers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号