首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   2篇
  国内免费   3篇
大气科学   5篇
地球物理   14篇
地质学   13篇
海洋学   51篇
天文学   18篇
自然地理   4篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2010年   5篇
  2009年   1篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   9篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1983年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1971年   1篇
排序方式: 共有105条查询结果,搜索用时 155 毫秒
101.
A numerical experiment using a three dimensional level model was performed to clarify the mechanism generating a strong coastal current, Kyucho, induced by the passage of Typhoon 0406 around the tip of the Tango Peninsula, Japan in June 2004. Wind stress accompanied by Typhoon 0406 was applied to the model ocean with realistic bottom topography and stratification condition. The model well reproduced the characteristics of Kyucho observed by Kumaki et al. (2005), i.e., the strong alongshore current with maximum velocity of 53 cm s−1 and its propagation along the peninsula with propagation speed of about 0.6 m s−1 one half-day after the typhoon’s passage. Coastal-trapped waves (CTW) accompanied by downwelling were induced along the northwest coast of the peninsula by the alongshore wind stress. The energy density flux due to the CTW flowed eastward along the coast, and indicated scattering of the CTW around the eastern coast of the peninsula. In addition, significant near-inertial internal gravity waves were also caused in the offshore region from the west of the Noto Peninsula to the north of the Tango Peninsula by the typhoon’s passage. The energy flux density of the near-inertial fluctuations flowed southward off the Fukui coast, and part of the energy flux was trapped on the tip of the Tango Peninsula, flowing with the coast on its right. It was found that the strong current, Kyucho, at the northeastern tip of the Tango Peninsula was generated by superposition of the near-inertial internal gravity waves and subinertial CTW.  相似文献   
102.
The Fredholm integral equation method (FIM), originally introduced by Holtet al. to solve the light scattering problem for ellipsoidal particles, is reinvestigated by taking into account a recent great progress in numerical computers. A numerical code optimized for vector-processing computers is developed, and is applied to the light scattering by spherical and spheroidal particles. The results for these particles are compared with those by the Mie theory and by Asano and Yamamoto, respectively, and it is confirmed that the agreement with both of them is satisfactory. Sample calculations are also performed for the oblique incidence, in which the direction of incidence is not parallel nor perpendicular to the symmetry axis of the particle. No difficulties in the computation are found compared with the calculations for the parallel or perpendicular incidence. We study the efficiency factor for polarization (Q pol) in general direction of incidence for spheroidal particles, and discuss the deviation from the Rayleigh approximation.  相似文献   
103.
The cold-water belt (CWB) is frequently formed off the Soya Warm Current (SWC) during summer and autumn. The detailed distribution of the flow and temperature fields observed by the R/V Sinyo-maru in the summer of 2001 captured the structures of the SWC and the CWB. The temperature and density distributions showed that the vertical distribution of the CWB is associated with the upwelling formed off the SWC. Numerical experiments using a two-layer model with realistic bottom topography have been performed to understand the formation mechanism of CWB and the upwelling structure off the current. In the experiment, the sea level difference between the Japan Sea and the Okhotsk Sea, and baroclinic flow assuming the Tsushima Warm Current were given along the open boundary. The numerical model well reproduces the current system of the SWC and upwelling region off it. The upwelling region is formed at the Soya Strait first, and then it spreads on the offshore side along the SWC as a developing current system. Analysis of the model data indicated that the geostrophic balance mainly dominates in the current system, while convergence of the bottom Ekman transport due to the SWC forms the upwelling region as the secondary circulation. In addition, the advection effect due to the SWC is found to strengthen the upwelling.  相似文献   
104.
Mooring observations using ADCP, electromagnetic current meters and thermometers were performed to clarify the vertical and horizontal structure of coastal-trapped waves (CTWs) on continental shelf and slope on the eastern side of Sagami Bay, Japan, in August and September 2003. A strong inflow associated with CTW caused by Typhoon 0315 (CTW15) was observed with remarkable downwelling. The maximum current due to CTW15 was over 100 cm s−1, confined to the upper layer shallower than 90 m. The CTW (CTW10) induced by Typhoon 0310, was associated with the coastal upwelling and maximum outflow was 33 cm s−1; the currents were extended near the bottom at 230 m depth. Remarkable discrepancies were found between the current structures of CTWs. CTW15 was explained by superposing the second CTW mode on the first CTW mode, whereas CTW10 was explained by the first CTW mode. The generation and propagation processes of both CTWs were reproduced by numerical experiments using a three-dimensional level model. The model results indicated that the difference of modal characteristics between CTW15 and CTW10 already exists in the CTW generation region and are due to difference of the wind direction, i.e., the typhoon’s path.  相似文献   
105.
Current measurements were made at five moored stations over the continental shelf off the San'in coast of the Japan Sea for a month in the summer of 1980 to study the vertical structure of the nearshore branch of the Tsushima Current. The time-mean current for the observational period is 20 to 25 cm sec–1 eastward near the surface and about 10 cm sec–1 westward near the sea bottom except at the shallowest station. The time-mean current,i.e. the nearshore branch of the Tsushima Current is mainly due to the baroclinic modes. The currents are less variable in the first half of the observational period, but fluctuate with a several-day period in the latter half. The obtained current data were decomposed into barotropic and baroclinic modes to investigate the detailed characteristics of the fluctuations. In the latter half, the current fluctuations of the two modes with about a 5-day period are well correlated with each other, as the baroclinic mode lagging behind the barotropic mode by 12 hr. The barotropic current fluctuation is correlated to the sea level, with the former leading the latter by about 12 hr. The baroclinic current is correlated to the temperature at the subsurface layer with a shorter time lag.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号