Recently, researchers have recognized the significant role of small mountainous river systems in the transport of carbon from terrestrial environments to the ocean, and the scale of such studies have ranged from channel bed units to continents. In temperate zones, these mountain river systems commonly drain catchments that are largely forested. However, the magnitude of carbon export from rivers draining old‐growth redwood forests has not been evaluated to date. Old‐growth redwood stands support some of the largest quantities of biomass in the world, up to 350 000 Mg of stem biomass km‐2 and soil organic carbon can reach 46 800 Mg km‐2. In north coastal California, suspended sediment samples were collected at three gaging stations for two to four years on streams draining old‐growth redwood forests. Carbon content, determined through loss‐on‐ignition tests, was strongly correlated with turbidity, and continuous turbidity records from the gaging stations were used to estimate annual carbon exports of 1 · 6 to 4 · 2 Mg km‐2 yr‐1. These values, representing 13 to 33% of the suspended sediment load, are some of the highest percentages reported in the global literature. The fraction of organic carbon as part of the suspended sediment load decreased with discharge, but reached an asymptote of 5 to 10% at flows 10 to 20 times the mean annual flows. Although larger rivers in this region exhibit high sediment yields (up to 3600 Mg km‐2 yr‐1), mainly attributed to high rates of uplift, mass movement, and timber harvest, the small pristine streams in this study have sediment yields of only 8 to 100 Mg km‐2 yr‐1. Because the current extent of old‐growth redwood stands is less than 5% of its pre‐European‐settlement distribution, the present organic carbon signature in suspended sediment loads in this region is likely different from that in the early 20th century. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. 相似文献
Triassic turbidites dominate the Songpan–Ganzi–Bayan Har (SGBH) terrane of the northern Tibetan Plateau. U‐Pb dating on single detrital zircon grains from the Triassic Bayan Har Group turbidites yield peaks at 400–500 m.y., 900–1000 m.y., 1800–1900 m.y., and 2400–2500 m.y., These results are consistent with recently published U‐Pb zircon ages of pre‐Triassic bedrock in the East Kunlun, Altyn, Qaidam, Qilian and Alaxa areas to the north, suggesting that provenance of the Bayan Har Group may include these rocks. The similarities in the compositions of the lithic arkosic sandstones of the Bayan Har Group with the sandstones of the Lower‐Middle Triassic formations in the East Kunlun terrane to the north also suggests a common northern provenance for both. A well exposed angular unconformity between the Carboniferous–Middle Permian mélange sequences and the overlying Upper Permian or Triassic strata indicates that regional deformation occurred between the Middle and Late Permian. This deformation may have been the result of a soft collision between the Qiangtang terrane and the North China Plate and the closure of the Paleo‐Tethyan oceanic basin. The Bayan Har Group turbidites were then deposited in a re‐opened marine basin on a shelf environment. Fission‐track dating of detrital zircons from the Bayan Har Group sandstones revealed pre‐ and post‐depositional age components, suggesting that the temperatures did not reach the temperatures necessary to anneal retentive zircon fission tracks (250–300°C). A 282–292 m.y. peak age defined by low U concentration, retentive zircons likely reflects a northern granitic source. Euhedral zircons from two lithic arkoses with abundant volcanic fragments in the southern area yielded a ~237 m.y. zircon fission track (ZFT) peak age, likely recording the maximum age of deposition. A dominant post‐depositional 170–185 m.y. ZFT peak age suggests peak temperatures were reached in the Early Jurassic. Some samples appear to record a younger thermal event at ~140 m.y., a short lived event that apparently affected only the least retentive zircons. 相似文献
This paper discusses the seasonal evolution of the hydrographic and biogeochemical properties in the Antarctic Circumpolar Current (ACC) during the US Joint Global Ocean Flux (JGOFS) Antarctic Environment and Southern Ocean Process Study (AESOPS) in 1997–1998. The location of the study region south of New Zealand along 170°W was selected based on the zonal orientation and meridional separation of the physical and chemical fronts found in that region. Here we endeavor to describe the seasonal changes of the macronutrients, fluorescence chlorophyll, particulate organic carbon (POC), and carbon dioxide (CO2) in the upper 400 m of the ACC during the evolution of the seasonal phytoplankton bloom found in this area. While the ACC has extreme variability in the meridional sense (due to fronts, etc.), it appears to be actually quite uniform in the zonal sense. This is reflected by the fact that a good deal of the seasonal zonal changes in nutrients distributions at 170°W follow a pattern that reflects what would be expected if the changes are associated with seasonal biological productivity. Also at 170°W, the productivity of the upper waters does not appear to be limited by availability of phosphate or nitrate. While there is a significant decrease (or uptake) of inorganic nitrogen, phosphate and silicate associated with the seasonal phytoplankton bloom, none of the nutrients, except perhaps silicate (north of the silicate front) are actually depleted within the euphotic zone. At the end of the growing season, nutrient concentrations rapidly approached their pre-bloom levels. Inspection of the ratios of apparent nutrient drawdown near 64°S suggests N/P apparent drawdowns to have a ratio of 10 and N/Si apparent drawdowns to have a ratio of >4. These ratios suggest a bloom that was dominated by Fe limited diatoms. In addition, the surface water in the Polar Front (PF) and the Antarctic Zone (AZ) just to the south of the PF take up atmospheric CO2 at a rate 2–3 times as fast as the mean global ocean rate during the summer season but nearly zero during the rest of year. This represents an important process for the transport of atmospheric CO2 into the deep ocean interior. Finally, the net CO2 utilization or the net community production during the 2.5 growing months between the initiation of phytoplankton blooms and mid-January increase southward from 1.5 mol C m−2 at 55°S to 2.2 mol C m−2 to 65°S across the Polar Frontal Zone (PFZ) into the AZ. 相似文献
An application of the EC8-3 procedure for safety assessment is presented herein. Besides testing the applicability of the
code procedure, this application aims to assess the consistency of the safety assessment results that are obtained. Based
on the application of the EC8-3 procedure, the study assesses if the different methods of analysis that are permitted lead
to similar safety results and identifies the factors that may affect these results. Furthermore, the results obtained by the
EC8-3 procedure are complemented by a probabilistic approach yielding their corresponding fragility values. By comparing the
D/C ratios and the probabilistic results, the application aims to determine if similar D/C ratios lead to similar probabilistic results. Furthermore, the application tries to determine if a correlation can be established
between the D/C ratios and the expected fragility values. 相似文献
Natural Hazards - Wildfires are becoming larger and more severe in different regions of the world as a result of climate change. A successful wildfire response requires a strong initial attack to... 相似文献
Mathematical Geosciences - In mining operations, the time delay between grade estimations and decision-making based on those estimations can be substantial. This may lead to the scheduling of... 相似文献
Matrix compositions of 32 carbonaceous chondrites have been analyzed by an electron microprobe defocussed-beam technique. Except in those chondrites that show evidence of metamorphism, matrices are compositionally similar and have correlation coefficients of +0.96 or greater. Weight per cent Mg/Si in matrices is constant (0.82 ± 0.05) but less than ratios derived from bulk analyses. Matrices in metamorphosed meteorites are Mg-depleted relative to those of other chondrites. Al Rais and Renazzo (anomalous by any classification scheme) have Mg-enriched matrices. Average matrix compositions cluster into chemical subgroups similar to those based on bulk chemical and petrographie criteria [C1, C2, C3(0), C3(V)]. C1 matrices are particularly variable in composition from point to point within the same meteorite, but points within individual breccia clasts appear to be more compositionally uniform. Cl matrices are depleted in Na, S, and Ca relative to solar and C2 matrix values, probably as a result of leaching. Matrix Ca/A1 ratios are highly variable and generally fall below the accepted meteoritic value. The only strong interelement correlation is for Fe, Ni, and S in C2 matrices, suggesting mixing of variable proportions of two components: Mg-rich phyllosilicate and a Ni-bearing chalcophile phase. The amount of magnetite associated with C2 matrix appears to vary systematically with matrix composition. Isotopic, chemical, and mineralogical constraints suggest that matrix, although appreciably altered in some meteorites, is chiefly a solar system condensation product which contains an admixture of unprocessed interstellar dust. 相似文献
Natural Hazards - Quantitatively assessing long-term volcanic risk can be challenging due to the many variables associated with volcanic hazard and vulnerability. This study presents a structured... 相似文献
An integrated study of the stratigraphy, structure, sedimentology, and geomorphology of the Akrata–Derveni region (southern coast of the Gulf of Corinth, Greece) forms the basis for a tectono-stratigraphic model for the evolution of the Plio-Pleistocene central Corinth Rift.
The syn-rift sediments exposed on the uplifted southern coast of the Gulf of Corinth comprise three stratigraphic groups. Maximum total thickness of the syn-rift sediments can reach 2800 m in the middle of the studied area. The Lower Group is made of fluvio-lacustrine deposits. The Middle Group corresponds to thick alluvial fan conglomerates and their equivalent Gilbert-type fan deltas that built toward the north. The Upper Group is composed of uplifted terrace deposits, slope breccias and small Gilbert-type deltas. These groups have been subdivided into informal formations and depositional systems. Restoration of the stratigraphic architecture along a N–S transect provides a linked structural and depositional model for this part of the rift. Reconstruction of the latest phases of uplift is based on a study of geomorphological features.
Evolutionary phases include, (1) an overall increase in accommodation space during deposition of the Lower and Middle Groups followed by (2) a drastic decrease in accommodation space during deposition of the Upper Group. Sedimentary signals indicate that most of the major normal faults were active during deposition of the Lower Group. The depocentre was located in the middle part of the study area and paleocurrents were predominantly toward the ENE. The main depositional system shifted south at the onset of deposition of the Middle Group, recording a widening and deepening of the rift. This major event also corresponds to a change in paleocurrent direction to a clear northward polarity. The southernmost border fault, the Killini Fault, was sealed during deposition of the Middle Group. A northward migration of fault activity was associated with northward progradation of giant Gilbert-type fan deltas that record water depths up to 500 m. Finally, the fan delta system was abandoned as progressive tilting to the south and uplift of the margin induced a reversal of the drainage system with the development of an endorheic depression. Sediment supply to the basin thus decreased and a forced regression took place during deposition of the Upper Group recording a northward shift of more than 5 km and a 600 m relative sea-level drop. As no major eustatic sea-level falls of such amplitude are documented during the Pleistocene, the uplift is linked to regional tectonics. Uplift and fault reactivation gave the present day configuration of the southern coast of the Gulf. 相似文献
In both nature and synthetic experiments, the common iron oxide haematite (α‐Fe2O3) can incorporate significant amounts of U into its crystal structure and retain radiogenic Pb over geological time. Haematite is a ubiquitous component of many ore deposit types and, therefore, represents a valuable hydrothermal mineral geochronometer, allowing direct constraints to be placed on the timing of ore formation and upgrading. However, to date, no suitable natural haematite reference material has been identified. Here, a synthetic haematite U‐Pb reference material (MR‐HFO) is characterised using LA‐ICP‐MS and ID‐TIMS. Centimetre‐scale ‘chips’ of synthesised α‐Fe2O3 were randomly microsampled via laser ablation‐extraction and analysed using ID‐TIMS. Reproducible U/Pb and Pb/Pb measurements were obtained across four separate chips (n = 13). Subsequently, an evaluation of the suitability MR‐HFO in constraining U‐Pb data via LA‐ICP‐MS is presented using a selection of natural samples ranging from Cenozoic to Proterozoic in age. The MR‐HFO normalised U‐Pb ratios are more concordant and ages more accurate versus the same LA‐ICP‐MS spot analyses normalised to zircon reference material, when compared with independently acquired ID‐TIMS data from the same natural haematite grains. Results establish MR‐HFO as a suitable reference material for LA‐ICP‐MS haematite U‐Pb geochronology. 相似文献