全文获取类型
收费全文 | 105篇 |
免费 | 15篇 |
国内免费 | 4篇 |
专业分类
测绘学 | 1篇 |
大气科学 | 6篇 |
地球物理 | 49篇 |
地质学 | 44篇 |
海洋学 | 10篇 |
天文学 | 5篇 |
自然地理 | 9篇 |
出版年
2021年 | 1篇 |
2020年 | 1篇 |
2019年 | 3篇 |
2018年 | 4篇 |
2017年 | 4篇 |
2016年 | 4篇 |
2015年 | 7篇 |
2014年 | 8篇 |
2013年 | 5篇 |
2012年 | 5篇 |
2011年 | 5篇 |
2010年 | 9篇 |
2009年 | 6篇 |
2008年 | 4篇 |
2007年 | 4篇 |
2006年 | 5篇 |
2005年 | 8篇 |
2004年 | 8篇 |
2003年 | 4篇 |
2002年 | 2篇 |
2000年 | 5篇 |
1999年 | 3篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1995年 | 1篇 |
1994年 | 3篇 |
1991年 | 3篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1981年 | 1篇 |
1978年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有124条查询结果,搜索用时 28 毫秒
61.
A series of linked extensional detachments, transfer faults, and sediment- and volcanic-filled half-grabens that pre-date regional folding are described in the Late Archaean Margaret anticline, Eastern Goldfields Province, Yilgarn Craton, Western Australia. Coeval structures and rock units include layer-parallel extensional detachments, transfer faults (high-angle rotational faults rooted in the detachments and linking layer-parallel shear zones with varying amounts of extension); felsic intrusions, either as granitoids emplaced in or below the detachments, or as fine-grained intrusive bodies emplaced above the detachments and controlled by the high-angle faults; and half-grabens controlled by the high-angle faults and filled with clastic sedimentary and volcanic rocks. At least 1500 m of section is excised across the detachments. The detachments and high-angle faults are folded by the east-northeast regional compression that formed the Margaret anticline. Extensional deformation in the Margaret anticline is correlated with the regionally recognised felsic magmatism and associated volcanic and volcaniclastic basin fill dated at approximately 2685–2670 Ma across the Eastern Goldfields Province. This suggests the extensional event was province-wide and post-dated initial greenstone deposition (at around 2705 Ma) but pre-dated regional compressive deformation. We suggest the extension is the result of a thermal anomaly in the crust, generated by the insulating effect of a thick pile (of the order of 10 km or greater) of mafic and ultramafic volcanic rocks on precursor Archaean felsic crust. The thermal anomaly has generated renewed production of felsic and mafic volcanic rocks, coeval with uplift and extension in the upper crust. 相似文献
62.
Lithofacies modelling and sequence stratigraphy in microtidal cool-water carbonates: a case study from the Pleistocene of Sicily, Italy 总被引:2,自引:0,他引:2
ABSTRACT Quaternary carbonates in SE Sicily were deposited in seamount and short ramp settings during glacio‐eustatically driven highstand conditions. They provide an excellent opportunity to investigate the depositional and erosional aspects of cool‐water carbonate sedimentation in a microtidal marine water body. The derived ramp facies model differs significantly from modern‐day, open‐ocean ramp scenarios in projected facies depth ranges and in the preservation of inshore facies. A sequence stratigraphic study of the carbonates has confirmed many established aspects of carbonate sedimentation (e.g. production usually only occurred during highstands). It has also revealed several new features peculiar to water bodies with little tidal influence, including ‘catch‐up’ surfaces taking the place of transgressive facies, second‐order sequence boundary events being most important as triggers for initiating resedimentation and a virtual absence of sediment shedding to the basin during the terminal lowstand. Production in the carbonate factory lasted for about 0·5 Myr. Despite this, carbonate production was considerable and included both bioconstructional and bioclastic‐dominated facies and the production of abundant lime muds. A model for eustatically controlled cool‐water carbonate production and resedimentation in microtidal marine water bodies is presented. This is considered to be more applicable to Neogene and Quaternary strata in the Mediterranean region than are current open‐ocean models. 相似文献
63.
Hilary K. McMillan Martyn P. Clark William B. Bowden Maurice Duncan Ross A. Woods 《水文研究》2011,25(4):511-522
Hydrological scientists develop perceptual models of the catchments they study, using field measurements and observations to build an understanding of the dominant processes controlling the hydrological response. However, conceptual and numerical models used to simulate catchment behaviour often fail to take advantage of this knowledge. It is common instead to use a pre‐defined model structure which can only be fitted to the catchment via parameter calibration. In this article, we suggest an alternative approach where different sources of field data are used to build a synthesis of dominant hydrological processes and hence provide recommendations for representing those processes in a time‐stepping simulation model. Using analysis of precipitation, flow and soil moisture data, recommendations are made for a comprehensive set of modelling decisions, including Evapotranspiration (ET) parameterization, vertical drainage threshold and behaviour, depth and water holding capacity of the active soil zone, unsaturated and saturated zone model architecture and deep groundwater flow behaviour. The second article in this two‐part series implements those recommendations and tests the capability of different model sub‐components to represent the observed hydrological processes. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
64.
西藏高原中南部地壳与上地幔导电性结构 总被引:2,自引:0,他引:2
根据2001年国土资源部"十五"青藏专项研究计划项目"西藏高原南部岩石圈电性结构的大地电磁研究"所完成的吉隆-措勤剖面(800线)以及2004年教育部重大项目"藏南雅鲁藏布江缝合带地区地壳三维电性结构及其构造地质学与动力学意义的研究"所完成的定日-措迈剖面(900线)超宽频带大地电磁测深数据,研究西藏高原中南部地壳及上地幔电性结构特征及雅鲁藏布江缝合带导电性结构特征:800线和900线上地壳范围内主要为高阻区,电阻率在200~3000Ω.m之间,顶面大范围出露,底面一般在15~20km深度处,整体上,高阻区底面由南向北逐渐加深,再向北又逐渐变浅,900线高阻体底界深达30km,而800线高阻体底界更深达38km;地下15~45km深度范围内存在一组电性梯度带,该电性梯度带之下存在一组硕大的高导层,其电阻率小于5Ω.m,高导层由规模不等且不连续的高导体构成.雅鲁藏布江以南的中地壳高导体,规模较小,厚度在10km左右,产状略向北倾;雅鲁藏布江以北的高导体,规模较大,厚度在30km左右,产状向北缓倾;相比之下,900线的高导体厚度较小,顶面深度较浅.通过对岩石电阻率影响因素的讨论,推测高导体的成因是部分熔融或含水流体,判断藏南巨厚的中、下地壳的物质状态是热的、软弱的、塑性的. 相似文献
65.
Hydrological footprints of urban developments in the Lake Simcoe watershed,Canada: a combined paired‐catchment and change detection modelling approach 下载免费PDF全文
Urban sprawl and regional climate variability are major stresses on surface water resources in many places. The Lake Simcoe watershed (LSW) Ontario, Canada, is no exception. The LSW is predominantly agricultural but is experiencing rapid population growth because of its proximity to the Greater Toronto area. This has led to extensive land use changes that have impacted its water resources and altered run‐off patterns in some rivers draining to the lake. Here, we use a paired‐catchment approach, hydrological change detection modelling and remote sensing analysis of satellite images to evaluate the impacts of land use change on the hydrology of the LSW (1994 to 2008). Results show that urbanization increased up to 16% in Lovers Creek, the most urban‐impacted catchment. Annual run‐off from Lovers Creek increased from 239 to 442 mm/year in contrast to the reference catchment (Black River at Washago) where run‐off was relatively stable with an annual mean of 474 mm/year. Increased annual run‐off from Lovers Creek was not accompanied by an increase in annual precipitation. Discriminant function analysis suggests that early (1992–1997; pre‐major development) and late (2004–2009; fully urbanized) periods for Lovers Creek separated mainly based on model parameter sets related to run‐off flashiness and evapotranspiration. As a result, parameterization in either period cannot be used interchangeably to produce credible run‐off simulations in Lovers Creek because of greater scatter between the parameters in canonical space. Separation of early and late‐period parameter sets for the reference catchment was based on climate and snowmelt‐related processes. This suggests that regional climatic variability could be influencing hydrologic change in the reference catchment, whereas urbanization amplified the regional natural hydrologic changes in urbanizing catchments of the LSW. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
66.
Identification of factors controlling sediment dynamics under natural flow regimes can establish a baseline for quantifying effects of present day hydrological alteration and future climate change on sediment delivery and associated flooding. The process-based INCA-Sediment model was used to simulate Ganga River sediment transport under baseline conditions and to quantify possible future changes using three contrasting climate scenarios. Construction of barrages and canals has significantly altered natural flow regimes, with profound consequences for sediment transport. Projected increases in future monsoonal precipitation will lead to higher peak flows, increasing flood frequency and greater water availability. Increased groundwater recharge during monsoon periods and greater rates of evaporation due to increased temperature complicate projections of water availability in non-monsoon periods. Rainfall and land surface interaction in high-relief areas drive uncertainties in Upper Ganga sediment loads. However, higher monsoonal peak flows will increase erosion and sediment delivery in western and lower reaches. 相似文献
67.
68.
Submarine sediment and landform record of a palaeo‐ice stream within the British−Irish Ice Sheet 下载免费PDF全文
Tom Bradwell Martyn S. Stoker 《Boreas: An International Journal of Quaternary Research》2015,44(2):255-276
This paper examines marine geophysical and geological data, and new multibeam bathymetry data to describe the Pleistocene sediment and landform record of a large ice‐stream system that drained ~3% of the entire British?Irish Ice Sheet at its maximum extent. Starting on the outer continental shelf NW of Scotland we describe: the ice‐stream terminus environment and depocentre on the outer shelf and continental slope; sediment architecture and subglacial landforms on the mid‐shelf and in a large marine embayment (the Minch); moraines and grounding line features on the inner shelf and in the fjordic zone. We identify new soft‐bed (sediment) and hard‐bed (bedrock) subglacial landform assemblages in the central and inner parts of the Minch that confirm the spatial distribution, coherence and trajectory of a grounded fast‐flowing ice‐sheet corridor. These include strongly streamlined bedrock forms and megagrooves indicating a high degree of ice‐bed coupling in a zone of flow convergence associated with ice‐stream onset; and a downstream bedform evolution (short drumlins to km‐scale glacial lineations) suggesting an ice‐flow velocity transition associated with a bed substrate and roughness change in the ice‐stream trunk. Chronology is still lacking for the timing of ice‐stream demise; however, the seismic stratigraphy, absence of moraines or grounding‐line features, and presence of well‐preserved subglacial bedforms and iceberg scours, combined with the landward deepening bathymetry, all suggest that frontal retreat in the Minch was probably rapid, via widespread calving, before stabilization in the nearshore zone. Large moraine complexes recording a coherent, apparently long‐lived, ice‐sheet margin position only 5–15 km offshore strongly support this model. Reconstructed ice‐discharge values for the Minch ice stream (12–20 Gt a?1) are comparable to high mass‐flux ice streams today, underlining it as an excellent palaeo‐analogue for recent rapid change at the margins of the Greenland and West Antarctic Ice Sheets. 相似文献
69.
Wei Wenbo Jin Sheng Ye Gaofeng Deng Ming Tan Handong Martyn Unsworth John Booker Alan G. Jones Li Shenghui 《Frontiers of Earth Science》2007,1(1):121-128
The features of the faults in the central and northern Tibetan plateau are discussed, based on two super-wide band magnetotelluric
(MT) sounding profiles belonging to the INDEPTH (III)-MT project, which were finished between 1998 and 1999: one is from Deqing
to Longweicuo (named line 500), the other is from Naqu to Golmud (line 600). This work assists research on the collision and
subduction mode between the India and Asia plates. The MT results show that there is a series of deep faults, F1 to F10, in
the central and northern Tibetan plateau. Of these faults, F2 is an earlier main fault which leans to the north, and F1 is
a later main overriding fault. The Jiali deep fault zone, which has a very complex space structure, is composed of these two
faults. F3, F4 and F5 are super-deep faults. They are high-angle faults and lean a little to the south. The main fault zone
of the Bangong-Nujiang suture is composed of these three faults. Because of later activity in the structure, several shallow
faults formed in the upper crust within the Bangong-Nujiang suture. The Tanggula fault zone is composed of two main faults,
F6 and F7, and a series of sub-faults. The shallow segments of the main faults are in high angles and the deep segments of
main faults are in low angles. These two faults generally lean to the south and extend into the lower crust. The Jinshajiang
suture is composed of the Jinshajiang fault (F8) and the Kekexili fault (F9), and there is a series of sub-faults in the upper
crust between these two faults. The Jinshajiang suture is a very wide suture caused by continent-continent collision. The
Middle Kunlun fault (F10), which is the main structure of the Kunlun fault zone, is a high angle, super-deep fault. It is
the north boundary of the Songpan-Ganzi-Kekexili block. Based on the conductive structure of the profile, the southern part
of the Middle Kunlun fault belongs to the Tibetan plateau, but it is not certain whether the northern part of the Middle Kunlun
fault belongs to the Tibetan plateau. There are conductive bodies stretching from the crust into the upper mantle below the
Bangong-Nujiang suture and Jinshajiang suture. This may suggest heat exchange between the crust and mantle.
Translated from Earth Science—Journal of China University of Geosciences, 2006, 31(2): 257–265 [译自: 地球科学—中国地质大学学报] 相似文献
70.
Mary C. Hill Dmitri Kavetski Martyn Clark Ming Ye Mazdak Arabi Dan Lu Laura Foglia Steffen Mehl 《Ground water》2016,54(2):159-170
Three challenges compromise the utility of mathematical models of groundwater and other environmental systems: (1) a dizzying array of model analysis methods and metrics make it difficult to compare evaluations of model adequacy, sensitivity, and uncertainty; (2) the high computational demands of many popular model analysis methods (requiring 1000's, 10,000 s, or more model runs) make them difficult to apply to complex models; and (3) many models are plagued by unrealistic nonlinearities arising from the numerical model formulation and implementation. This study proposes a strategy to address these challenges through a careful combination of model analysis and implementation methods. In this strategy, computationally frugal model analysis methods (often requiring a few dozen parallelizable model runs) play a major role, and computationally demanding methods are used for problems where (relatively) inexpensive diagnostics suggest the frugal methods are unreliable. We also argue in favor of detecting and, where possible, eliminating unrealistic model nonlinearities—this increases the realism of the model itself and facilitates the application of frugal methods. Literature examples are used to demonstrate the use of frugal methods and associated diagnostics. We suggest that the strategy proposed in this paper would allow the environmental sciences community to achieve greater transparency and falsifiability of environmental models, and obtain greater scientific insight from ongoing and future modeling efforts. 相似文献