首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   831篇
  免费   62篇
  国内免费   11篇
测绘学   14篇
大气科学   43篇
地球物理   202篇
地质学   310篇
海洋学   65篇
天文学   187篇
综合类   2篇
自然地理   81篇
  2021年   18篇
  2020年   7篇
  2019年   17篇
  2018年   21篇
  2017年   23篇
  2016年   20篇
  2015年   20篇
  2014年   22篇
  2013年   39篇
  2012年   21篇
  2011年   43篇
  2010年   31篇
  2009年   36篇
  2008年   36篇
  2007年   28篇
  2006年   34篇
  2005年   38篇
  2004年   24篇
  2003年   30篇
  2002年   14篇
  2001年   19篇
  2000年   15篇
  1999年   16篇
  1998年   23篇
  1997年   6篇
  1996年   9篇
  1995年   7篇
  1994年   10篇
  1993年   8篇
  1992年   13篇
  1991年   11篇
  1990年   10篇
  1989年   6篇
  1988年   8篇
  1987年   8篇
  1985年   10篇
  1984年   17篇
  1983年   21篇
  1982年   9篇
  1981年   15篇
  1980年   15篇
  1979年   16篇
  1978年   21篇
  1977年   22篇
  1976年   12篇
  1975年   8篇
  1974年   8篇
  1973年   11篇
  1971年   4篇
  1968年   6篇
排序方式: 共有904条查询结果,搜索用时 15 毫秒
101.
Cassini Visual Infrared Mapping Spectrometer (VIMS) observations of Mimas, Tethys, and Dione obtained during the nominal and extended missions at large solar phase angles were analyzed to search for plume activity. No forward scattered peaks in the solar phase curves of these satellites were detected. The upper limit on water vapor production for Mimas and Tethys is one order of magnitude less than the production for Enceladus. For Dione, the upper limit is two orders of magnitude less, suggesting this world is as inert as Rhea (Pitman, K.M., Buratti, B.J., Mosher, J.A., Bauer, J.M., Momary, T., Brown, R.H., Nicholson, P.D., Hedman, M.M. [2008]. Astrophys. J. Lett. 680, L65-L68). Although the plumes are best seen at ∼2.0 μm, Imaging Science Subsystem (ISS) Narrow Angle Camera images obtained at the same time as the VIMS data were also inspected for these features. None of the Cassini ISS images shows evidence for plumes. The absence of evidence for any Enceladus-like plumes on the medium-sized saturnian satellites cannot absolutely rule out current geologic activity. The activity may below our threshold of detection, or it may be occurring but not captured on the handful of observations at large solar phase angles obtained for each moon. Many VIMS and ISS images of Enceladus at large solar phase angles, for example, do not contain plumes, as the active “tiger stripes” in the south pole region are pointed away from the spacecraft at these times. The 7-year Cassini Solstice Mission is scheduled to gather additional measurements at large solar phase angles that are capable of revealing activity on the saturnian moons.  相似文献   
102.
103.
Several of the icy satellites of Saturn show the spectroscopic signature of the asymmetric stretching mode of C-O in carbon dioxide (CO2) at or near the nominal solid-phase laboratory wavelength of 4.2675 μm (2343.3 cm−1), discovered with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft. We report here on an analysis of the variation in wavelength and width of the CO2 absorption band in the spectra of Phoebe, Iapetus, Hyperion, and Dione. Comparisons are made to laboratory spectra of pure CO2, CO2 clathrates, ternary mixtures of CO2 with other volatiles, implanted and adsorbed CO2 in non-volatile materials, and ab initio theoretical calculations of CO2 * nH2O. At the wavelength resolution of VIMS, the CO2 on Phoebe is indistinguishable from pure CO2 ice (each molecule’s nearby neighbors are also CO2) or type II clathrate of CO2 in H2O. In contrast, the CO2 band on Iapetus, Hyperion, and Dione is shifted to shorter wavelengths (typically ∼4.255 μm (∼2350.2 cm−1)) and broadened. These wavelengths are characteristic of complexes of CO2 with different near-neighbor molecules that are encountered in other volatile mixtures such as with H2O and CH3OH, and non-volatile host materials like silicates, some clays, and zeolites. We suggest that Phoebe’s CO2 is native to the body as part of the initial inventory of condensates and now exposed on the surface, while CO2 on the other three satellites results at least in part from particle or UV irradiation of native H2O plus a source of C, implantation or accretion from external sources, or redistribution of native CO2 from the interior.The analysis presented here depends on an accurate VIMS wavelength scale. In preparation for this work, the baseline wavelength calibration for the Cassini VIMS was found to be distorted around 4.3 μm, apparently as a consequence of telluric CO2 gas absorption in the pre-launch calibration. The effect can be reproduced by convolving a sequence of model detector response profiles with a deep atmospheric CO2 absorption profile, producing distorted detector profile shapes and shifted central positions. In a laboratory blackbody spectrum used for radiance calibration, close examination of the CO2 absorption profile shows a similar deviation from that expected from a model. These modeled effects appear to be sufficient to explain the distortion in the existing wavelength calibration now in use. A modification to the wavelength calibration for 13 adjacent bands is provided. The affected channels span about 0.2 μm centered on 4.28 μm. The maximum wavelength change is about 10 nm toward longer wavelength. This adjustment has implications for interpretation of some of the spectral features observed in the affected wavelength interval, such as from CO2, as discussed in this paper.  相似文献   
104.
We apply a multivariate statistical method to Titan data acquired by different instruments onboard the Cassini spacecraft. We have searched through Cassini/VIMS hyperspectral cubes, selecting those data with convenient viewing geometry and that overlap with Cassini/RADAR scatterometry footprints with a comparable spatial resolution. We look for correlations between the infrared and microwave ranges the two instruments cover. Where found, the normalized backscatter cross-section obtained from the scatterometer measurement, corrected for incidence angle, and the calibrated antenna temperature measured along with the scatterometry echoes, are combined with the infrared reflectances, with estimated errors, to produce an aggregate data set, that we process using a multivariate classification method to identify homogeneous taxonomic units in the multivariate space of the samples.In medium resolution data (from 20 to 100 km/pixel), sampling relatively large portions of the satellite’s surface, we find regional geophysical units matching both the major dark and bright features seen in the optical mosaic. Given the VIMS cubes and RADAR scatterometer passes considered in this work, the largest homogeneous type is associated with the dark equatorial basins, showing similar characteristics as each other on the basis of all the considered parameters.On the other hand, the major bright features seen in these data generally do not show the same characteristics as each other. Xanadu, the largest continental feature, is as bright as the other equatorial bright features, while showing the highest backscattering coefficient of the entire satellite. Tsegihi is very bright at 5 μm but it shows a low backscattering coefficient, so it could have a low roughness on a regional scale and/or a different composition. Another well-defined region, located southwest of Xanadu beyond the Tui Regio, seems to be detached from the surrounding terrains, being bright at 2.69, 2.78 and 5 μm but having a low radar brightness. In this way, other units can be found that show correlations or anti-correlations between the scatterometric response and the spectrophotometric behavior, not evident from the optical remote sensing data.  相似文献   
105.
Extracts of the viscera of Haliotis iris (Martyn, 1784) were shown to hydrolyse 2‐hydroxy‐5‐nitrophenyl sulphate at pH 5.5, and the p‐nitrophenyl derivatives of α‐ and β‐D‐galactose, α‐ and β‐D‐mannose, α‐L‐lucose, β‐D‐glucuronic acid, β‐N‐acetyl glucosamine and phosphate at pH 4.0 and 5.5: p‐nitrophenyl‐β‐L‐fucose was not hydrolysed.  相似文献   
106.
An observational study has been conducted concerning atmospheric dewfall and fog-droplet deposition with application to the formation and maintenance of fog layers. The relationship between dew and fog is discussed together with the challenges and requirements to measure representative values of their deposition to the surface. A practical instrument developed at the UK Met Office Research Unit, Cardington, is described. The instrument is a small portable device that uses a load cell to measure the weight of a pan upon which various types of natural and artificial canopies can be placed, and can measure dewfall and fog-droplet deposition to an accuracy of 0.0005 mm. Dewfall results from this device are shown for a selection of nights under varying conditions. On a given night the overriding factor determining the amount of dew deposition appears to be location. Several dewmeter devices were placed at different locations around the 18 ha Cardington field site for various clear nights and it was found that dew amounts varied significantly, depending on location: canopies with a more open aspect experienced more deposition by up to a factor of two. The results also suggest that the hygroscopic effect of a canopy, whereby water is absorbed into the canopy and topsoil layer before dew formation begins, is also important for the removal of atmospheric water vapour. Results indicate this effect can be of a similar magnitude to dew deposition. Measurements of fog-droplet deposition showed total water deposition rates did not change when thin radiation fog formed. When optically thick adiabatic fog formed, deposition rates were seen to decrease with time or be generally lower than for thinner radiation fog. Further observations are required to establish if the behaviours found are typical for all fogs.  相似文献   
107.
Climate is an important driver of dissolved organic carbon (DOC) dynamics in boreal catchments characterized by networks of streams within forest-wetland landscape mosaics. In this paper, we assess how climate change may affect stream DOC concentrations ([DOC]) and export from boreal forest streams with a multi-model ensemble approach. First, we apply an ensemble of regional climate models (RCMs) to project soil temperatures and stream-flows. These data are then used to drive two biogeochemical models of surface water DOC: (1) The Integrated Catchment model for Carbon (INCA-C), a detailed process-based model of DOC operating at the catchment scale, and (2) The Riparian Integration Model (RIM), a simple dynamic hillslope scale model of stream [DOC]. All RCMs project a consistent increase in temperature and precipitation as well as a shift in spring runoff peaks from May to April. However, they present a considerable range of possible future runoff conditions with an ensemble median increase of 31 % between current and future (2061–2090) conditions. Both biogeochemical models perform well in describing the dynamics of present-day stream [DOC] and fluxes, but disagree in their future projections. Here, we assess possible futures in three boreal catchments representative of forest, mire and mixed landscape elements. INCA-C projects a wider range of stream [DOC] due to its temperature sensitivity, whereas RIM gives consistently larger inter-annual variation and a wider range of exports due to its sensitivity to hydrological variations. The uncertainties associated with modeling complex processes that control future DOC dynamics in boreal and temperate catchments are still the main limitation to our understanding of DOC mechanisms under changing climate conditions. Novel, currently overlooked or unknown drivers may appear that will present new challenges to modelling DOC in the future.  相似文献   
108.
The quarry at Kottavattom in the Trivandrum Block of southern India contains spectacular examples of fluid-assisted alteration of high-grade metamorphic rocks. Garnet-biotite gneiss has undergone a change in mineral assemblage to form submetre scale orthopyroxene-bearing patches, later retrogressed to form an amphibole-bearing lithology. These patches, often referred to as arrested or incipient charnockite, crosscut the original metamorphic foliation and are typically attributed to passage of a low aH2O fluid through the rock. Whilst this conversion is recognised as a late stage process, little detailed chronological work exists to link it temporally to metamorphism in the region. Zircon and monazite analysed from Kottavattom not only record metamorphism in the Trivandrum Block but also show internal, lobate textures crosscutting the original zoning, consistent with fluid-aided coupled dissolution-reprecipitation during formation of the orthopyroxene-bearing patches. High-grade metamorphism at the quarry occurred between the formation of metamorphic monazite at ~585 Ma and the growth of metamorphic zircon at ~523 Ma. The fluid-assisted alteration of the garnet-biotite gneiss is poorly recorded by altered zircon with only minimal resetting of the U–Pb system, whereas monazite has in some cases undergone complete U–Pb resetting and records an age for fluid infiltration at ~495 Ma. The fluid event therefore places the formation of the altered patches at least 25 Myr after the zircon crystallisation in the garnet-biotite gneiss. The most likely fluid composition causing the modification and U–Pb resetting of zircon and monazite is locally derived hypersaline brine.  相似文献   
109.
In situ Pleistocene reefs form a gently sloping nearshore terrace around the island of Oahu. TIMS Th–U ages of in situ corals indicate that most of the terrace is composed of reefal limestones correlating to Marine Oxygen Isotope Stage 7 (MIS 7, ~ 190–245 ka). The position of the in situ MIS 7 reef complex indicates that it formed during periods when local sea level was ~ 9 to 20 m below present sea level. Its extensiveness and geomorphic prominence as well as a paucity of emergent in situ MIS 7 reef-framework deposits on Oahu suggest that much of MIS 7 was characterized by regional sea levels below present. Later accretion along the seaward front of the terrace occurred during the latter part of MIS 5 (i.e., MIS 5a–5d, ~ 76–113 ka). The position of the late MIS 5 reefal limestones is consistent with formation during a period when local sea level was below present. The extensiveness of the submerged Pleistocene reefs around Oahu compared to the relative dearth of Holocene accretion is due to the fact that Pleistocene reefs had both more time and more accommodation space available for accretion than their Holocene counterparts.  相似文献   
110.
We present an 8000‐year history spanning 650 km of ice margin retreat for the largest marine‐terminating ice stream draining the former British–Irish Ice Sheet. Bayesian modelling of the geochronological data shows the ISIS expanded 34.0–25.3 ka, accelerating into the Celtic Sea to reach maximum limits 25.3–24.5 ka before a collapse with rapid marginal retreat to the northern Irish Sea Basin (ISB). This retreat was rapid and driven by climatic warming, sea‐level rise, mega‐tidal amplitudes and reactivation of meridional circulation in the North Atlantic. The retreat, though rapid, is uneven, with the stepped retreat pattern possibly a function of the passage of the ice stream between normal and adverse ice bed gradients and changing ice stream geometry. Initially, wide calving margins and adverse slopes encouraged rapid retreat (~550 m a?1) that slowed (~100 m a?1) at the topographic constriction and bathymetric high between southern Ireland and Wales before rates increased (~200 m a?1) across adverse bed slopes and wider and deeper basin configuration in the northern ISB. These data point to the importance of the ice bed slope and lateral extent in predicting the longer‐term (>1000 a) patterns and rates of ice‐marginal retreat during phases of rapid collapse, which has implications for the modelling of projected rapid retreat of present‐day ice streams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号