首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   3篇
  国内免费   3篇
测绘学   4篇
大气科学   9篇
地球物理   24篇
地质学   44篇
海洋学   11篇
天文学   18篇
自然地理   4篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   8篇
  2012年   11篇
  2011年   4篇
  2010年   8篇
  2009年   9篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   7篇
  2002年   8篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1979年   1篇
  1970年   1篇
  1902年   1篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
21.
One alternative to reduce global greenhouse gas emissions is to store the emissions in underground geologic sequestration repositories. The efficacy of this approach has been favorably evaluated by numerous authors over the last 15 years. This paper discusses an assessment of the overall feasibility of storing emissions in three different repositories in the Florida panhandle located in the Southeastern United States. The feasibility assessment evaluates both saline aquifers and oil reservoirs located in the panhandle region. The overall feasibility is driven by the available geologic sequestration capacity, the transportation cost to deliver emissions to a respective repository, and other engineering and regulatory issues. The geologic sequestration capacity is generally controlled by the so-called storage efficiency, a variable dependent on the site-specific geology, reservoir conditions, and the injected fluid characteristics. For this paper, storage efficiency for saline repositories was assessed in more detail using numerical modeling. Based on the work completed, the 3 repositories studied have at least 4.55 gigatonnes of capacity to sequester CO2.  相似文献   
22.
Some conceptual models suggest that baseflow in agriculturally fragmented watersheds may contain little, if any, groundwater. This has critical implications for stream quality and ecosystem functioning. Here, we (a) identify the sources and flowpaths contributing to baseflow using 222Rn and 87Sr/86Sr and (b) quantify mean apparent ages of groundwater and baseflow using multiple isotopic tracers (CFC, SF6, 36Cl, and 3H) in 4 small (0.08 to 0.64 km2) tributary catchments to the Wabash River in Indiana, USA. 222Rn activities and 87Sr/86Sr ratios indicate that baseflow in 3 catchments is sourced primarily from groundwater; baseflow in the fourth is dominated by a source similar to agricultural run‐off. CFC‐12 data indicate that springs in 1 catchment are discharging significant proportions of water that recharged between 1974 (42 ± 2 years) and 1961 (55 ± 2 years). Those same springs have 36Cl/Cl ratios between 1,381.08 ± 29.37 (×10?15) and 1,530.64 ± 27.65 (×10?15) indicating that a substantial proportion of the discharge likely recharged between 1975 (41 years) and 1950 (66 years). Groundwater samples collected from streambed mini‐piezometers in a separate catchment have CFC‐12 concentrations indicating that a large proportion of the recharge occurred between 1948 (68 ± 2 years) and 1950 (66 ± 2 years). Repeat sampling conducted in September 2015 after above‐average summer rainfall did not show significant decreases in mean apparent age. The relatively old ages observed in 3 of the catchments can be explained by geological complexities that are likely present in all 4 catchments, but overwhelmed by flow from the shallow phreatic aquifer in the fourth catchment.  相似文献   
23.
24.
25.
Identification of major nitrate sources that adversely impact groundwater quality in municipal well capture zones in areas of emerging nitrate contamination is essential to minimize leaching and prevent exceedance of the nitrate drinking water standard. Vertical profiles of nitrate leachate in deep soils provide an estimate of the amount of nitrate in transit beneath irrigated, row-cropped fields; depths of peak leachate; and the approximate rate of downward movement. Profiles of pore-water soil-nitrate concentrations in thick 60-feet (~18 m), fine-textured soils near Hastings, Nebraska clearly indicate that considerably more nitrate leached beneath furrow-irrigated than center-pivot irrigated fields. Peak leaching appeared to correlate with recorded periods of poor weather conditions during some growing seasons and may best be controlled by “spoon feeding” fertilizer to the crop through the sprinkler irrigation system at times of nutrient need. The presence of trace levels of atrazine and deethylatrazine to 60 feet (18 m) in core samples indicates that larger, more complex anthropogenic molecules also leach through the fine-textured soils. The light δ15NNO3 values in the surficial groundwater beneath fertilized and irrigated cropland indicate that ammonium fertilizer is a major N source and suggest that the natural soil-N contribution is negligible. δ15NNO3 values were most enriched in irrigation wells located within municipal well capture zones downgradient of a large feedlot. Dual isotope method (DIM) δ15NNO3 and δ18ONO3 values suggest that the Hastings’ municipal wells farther downgradient are contaminated with a mixture of nitrate from manure and commercial ammonium-based fertilizer. DIM values indicate an absence of denitrification, which has implications for long-term management of the water resources.  相似文献   
26.
On its highly elliptical 24 h orbit around Venus, the Venus Express (VEX) spacecraft briefly reaches a periapsis altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008, October 2009, February and April 2010, for which the periapsis altitude was lowered to the 186–176 km altitude range in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the periapsis pass, allowing us to infer total atmospheric mass density at the periapsis altitude. A Precise Orbit Determination (POD) of the VEX motion is performed through an iterative least-squares fitting process to the Doppler tracking data, acquired by the VEX radioscience experiment (VeRa). The drag acceleration is modelled using an initial atmospheric density model (VTS3 model, Hedin, A.E., Niemann, H.B., Kasprzak, W.T., Seiff, A. [1983]. J. Geophys. Res. 88, 73–83). A scale factor of the drag acceleration is estimated for each periapsis pass, which scales Hedin’s density model in order to best fit the radio tracking data. Reliable density scale factors have been obtained for 10 passes mainly from the second (October 2009) and third (April 2010) VExADE campaigns, which indicate a lower density by a factor of about 1.8 than Hedin’s model predicts. These first ever in situ polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus’ thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements (Müller-Wodarg et al., in preparation). The preliminary results of the VExADE campaigns show that it is possible to obtain with the POD technique reliable estimates of Venus’ upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from the planned further lowering of VEX pericenter altitude to below 170 km.  相似文献   
27.
Demersal rockfish are the only fish species that have been found dead in significant numbers after major oil spills, but the link between oil exposure and effect has not been well established. After the 1989 Exxon Valdez oil spill in Prince William Sound, Alaska, several species of rockfish (Sebastes spp.) from oiled and reference sites were analyzed for hydrocarbon metabolites in bile (1989-1991) and for microscopic lesions (1990 and 1991). Biliary hydrocarbons consistent with exposure to Exxon Valdez oil were elevated in 1989, but not in 1990 or 1991. Significant microscopic findings included pigmented macrophage aggregates and hepatic megalocytosis, fibrosis, and lipid accumulation. Site differences in microscopic findings were significant with respect to previous oil exposure in 1991 (P=0.038), but not in 1990. However, differences in microscopic findings were highly significant with respect to age and species in both years (P<0.001). We conclude that demersal rockfish were exposed to Exxon Valdez oil in 1989, but differences in microscopic changes in 1990 and 1991 were related more to age and species differences than to previous oil exposure.  相似文献   
28.
The role of the oxygen fugacity on the incorporation of nitrogen in basaltic magmas has been investigated using one atmosphere high temperature equilibration of tholeiitic-like compositions under controlled nitrogen and oxygen partial pressures in the [C-N-O] system. Nitrogen was extracted with a CO2 laser under high vacuum and analyzed by static mass spectrometry. Over a redox range of 18 oxygen fugacity log units, this study shows that the incorporation of nitrogen in silicate melts follows two different behaviors. For log fO2 values between −0.7 and −10.7 (the latter corresponding to IW − 1.3), nitrogen dissolves as a N2 molecule into cavities of the silicate network (physical solubility). Nitrogen presents a constant solubility (Henry’s) coefficient of 2.21 ± 0.53 × 10−9 mol g−1 atm−1 at 1425°C, identical within uncertainties to the solubility of argon. Further decrease in the oxygen fugacity (log fO2 between −10.7 and −18 corresponding to the range from IW − 1.3 to IW − 8.3) results in a drastic increase of the solubility of nitrogen by up to 5 orders of magnitude as nitrogen becomes chemically bounded with atoms of the silicate melt network (chemical solubility). The present results strongly suggest that under reducing conditions nitrogen dissolves in silicate melts as N3− species rather than as CN cyanide radicals. The nitrogen content of a tholeiitic magma equilibrated with N2 is computed from thermochemical processing of our data set as
  相似文献   
29.
Changes in phytoplankton composition and degradation of particulate organic matter (POM) in the northwestern Mediterranean Sea were studied using time-series sediment trap samples collected during the spring of 2003 at the DYFAMED station. Lipid biomarkers (pigments, fatty acids, sterols, acyclic isoprenoids, alkenones and n-alkanols) were used to identify the main contributors to the POM produced during two phytoplankton blooms, while the effects of photooxidation, autoxidation and biodegradation were differentiated using characteristic lipid degradation products. Traps collected material corresponding to pre-bloom, bloom and post-bloom periods. Pigment analyses in the integrated (0-200 m) water column samples indicated that diatoms dominated the initial stages of the bloom event, with smaller amounts of haptophytes and pelagophytes. During the second part of bloom event there was a switch to haptophyte dominance with significant contributions from diatoms and pelagophytes, and an increased contribution from cryptophytes. Fatty acid distributions in the trap samples reflected contributions from marine bacteria, phytoplankton and zooplankton. Photooxidation and autoxidation products of monounsaturated oleic, cis-vaccenic and palmitoleic acids were detected along with photooxidation products from the chlorophyll side-chain. The relatively good correlation between the variation of U37K′ index and specific phytol autoxidation product percentage allowed us to attribute the alterations of U37K′ observed during the pre-bloom period and in the deeper traps to the involvement of selective autoxidative degradation processes. A variety of sterol oxidation products formed by biohydrogenation, autoxidation and photooxidation were detected. Sterol degradation products appeared to be less suited than oxidation products of monounsaturated fatty acids for the precise monitoring of the degradation state of POM, but their stable functionalized cyclic structure constitutes a useful tool to estimate the part played by biotic and abiotic processes. In these waters, biotic degradation generally predominates, but abiotic degradation is not negligible and, as expected, the extent of biotic degradation increases with depth. To obtain a more complete picture of POM degradation, the use of a pool of lipid degradation products (i.e. from unsaturated fatty acids, the phytyl side-chain and sterols) should be employed.  相似文献   
30.
French (CNES) and Chinese (CNSA) space agencies collaborate to build the SVOM (Space-based multi-band Variable Object Monitor) mission due to be launched in 2021 to study gamma-ray bursts and high-energy transients. The SVOM prime instrument, ECLAIRs, will detect and localize GRBs autonomously as well as provide a spectral and temporal characterization of the GRB prompt emission. ECLAIRs is expected to detect around 200 GRBs during the 3 year nominal lifetime of the mission. ECLAIRs is a wide-field (\(\sim 2 \text {sr}\)) coded mask camera with a detection plane made of 8 independent sectors of 800 Schottky CdTe detectors working in the 4-150 keV energy range. Each sector is connected to independent readout electronics. In this paper, we focus on the study of the temporal performance and we estimate how dead time will affect bright transient lightcurves. We discuss the analytical model based on simulations over a large range of source count rates on a dedicated test bench. We show that dead time will not significantly affect ECLAIRs data, even for the brightest GRBs (3.7% of lost counts for a count rate of 105 counts.s??1 over the detection plane in the energy range 4?150 keV) and our model can nicely correct the parts of the lightcurves which are the most affected by dead time effects for very bright GRBs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号