首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   3篇
  国内免费   3篇
测绘学   4篇
大气科学   9篇
地球物理   24篇
地质学   44篇
海洋学   11篇
天文学   18篇
自然地理   4篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   8篇
  2012年   11篇
  2011年   4篇
  2010年   8篇
  2009年   9篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   7篇
  2002年   8篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1979年   1篇
  1970年   1篇
  1902年   1篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
11.
Given predictions of increased intensity and frequency of heat waves, it is important to study the effect of high temperatures on human mortality and morbidity. Many studies focus on heat wave-related mortality; however, heat-related morbidity is often overlooked. The goals of this study are to examine the historical observed relationship between temperature and morbidity (illness), and explore the extent to which observed historical relationships could be used to generate future projections of morbidity under climate change. We collected meteorological, air pollution, and hospital admissions data in Milwaukee, Wisconsin, for the years 1989–2005, and employed a generalized additive model (GAM) to quantify the relationship between morbidity (as measured by hospital admissions) and high temperatures with adjustment for the effects of potential confounders. We also estimated temperature threshold values for different causes of hospital admissions and then quantified the associated percent increase of admissions per degree above the threshold. Finally, the future impact of higher temperatures on admissions for the years 2059–2075 was examined. Our results show that five causes of admission (endocrine, genitourinary, renal, accidental, and self-harm) and three age groups (15–64, 75–84, >85 years) were affected by high temperatures. Future projections indicate a larger number of days above the current temperature threshold leading to an increase in admissions. Our results indicate that climate change may increase heat-related hospital admissions in the US urban mid-West and that health systems should include heat wave planning.  相似文献   
12.
The solar system, as we know it today, is about 4.5 billion years old. It is widely believed that it was essentially completed 100 million years after the formation of the Sun, which itself took less than 1 million years, although the exact chronology remains highly uncertain. For instance: which, of the giant planets or the terrestrial planets, formed first, and how? How did they acquire their mass? What was the early evolution of the “primitive solar nebula” (solar nebula for short)? What is its relation with the circumstellar disks that are ubiquitous around young low-mass stars today? Is it possible to define a “time zero” (t 0), the epoch of the formation of the solar system? Is the solar system exceptional or common? This astronomical chapter focuses on the early stages, which determine in large part the subsequent evolution of the proto-solar system. This evolution is logarithmic, being very fast initially, then gradually slowing down. The chapter is thus divided in three parts: (1) The first million years: the stellar era. The dominant phase is the formation of the Sun in a stellar cluster, via accretion of material from a circumstellar disk, itself fed by a progressively vanishing circumstellar envelope. (2) The first 10 million years: the disk era. The dominant phase is the evolution and progressive disappearance of circumstellar disks around evolved young stars; planets will start to form at this stage. Important constraints on the solar nebula and on planet formation are drawn from the most primitive objects in the solar system, i.e., meteorites. (3) The first 100 million years: the “telluric” era. This phase is dominated by terrestrial (rocky) planet formation and differentiation, and the appearance of oceans and atmospheres.  相似文献   
13.
On the basis of the GRIM4-S1 satellite-only Earth gravity model, being accomplished in a common effort by DGFI and GRGS, a combination solution, called GRIM4-C1, has been derivcd using 1° × 1° mean gravity anomalies and 1° × 1° Seasat altimeter derived mean geoid undulations. In the meantime improvements could be achieved by incorporating more tracking data (GEOSAT, SPOT2-DORIS) into the solution, resulting in the two new parallel versions, the satellite-only gravity model GRIM4-S2 and the combined solution GRIM4-C2p (preliminary). All GRIM4 Earth gravity models cover the spectral gravitational constituents complete up to degree and order 50.In this report the emphasis is on the discussion of the combined gravity models: combination and estimation techniques, capabilities for application in precise satellite orbit computation and accuracies in long wavelength geoid representation. It is shown that with the new generation of global gravity models general purpose satellite-only models are no longer inferior to combination solutions if applied to satellite orbit restitution.  相似文献   
14.
Summary The greenhouse effect has been investigated predominantly with satellite measurements, but more than 90% of the greenhouse radiative flux affecting Earths surface temperature and humidity originates from a 1000 meter layer above the surface. Here we show that substantial improvements on surface longwave radiation measurements and very good agreement with radiative transfer model calculations allow the clear-sky greenhouse effect be determined with measured surface longwave radiation and calculated longwave outgoing radiation at the top of the atmosphere. The cloud radiative forcing is determined by measured net longwave fluxes and added to the clear-sky greenhouse effect to determine the all-sky greenhouse effect. Longwave radiation measurements at different altitudes were used to determine the clear-sky and all-sky annual and seasonal greenhouse effect and altitude gradients over the Alps. Linear altitude gradients are measured for clear-sky situations, whereas the all-sky greenhouse effect is strongly influenced by varying, cloud amounts at different altitudes. Large diurnal and seasonal variations show the importance of surface heating and cooling effects and demonstrate the strong coupling of the greenhouse effect to surface temperature and humidity.  相似文献   
15.
Manually collected snow data are often considered as ground truth for many applications such as climatological or hydrological studies. However, there are many sources of uncertainty that are not quantified in detail. For the determination of water equivalent of snow cover (SWE), different snow core samplers and scales are used, but they are all based on the same measurement principle. We conducted two field campaigns with 9 samplers commonly used in observational measurements and research in Europe and northern America to better quantify uncertainties when measuring depth, density and SWE with core samplers. During the first campaign, as a first approach to distinguish snow variability measured at the plot and at the point scale, repeated measurements were taken along two 20 m long snow pits. The results revealed a much higher variability of SWE at the plot scale (resulting from both natural variability and instrumental bias) compared to repeated measurements at the same spot (resulting mostly from error induced by observers or very small scale variability of snow depth). The exceptionally homogeneous snowpack found in the second campaign permitted to almost neglect the natural variability of the snowpack properties and focus on the separation between instrumental bias and error induced by observers. Reported uncertainties refer to a shallow, homogeneous tundra-taiga snowpack less than 1 m deep (loose, mostly recrystallised snow and no wind impact). Under such measurement conditions, the uncertainty in bulk snow density estimation is about 5% for an individual instrument and is close to 10% among different instruments. Results confirmed that instrumental bias exceeded both the natural variability and the error induced by observers, even in the case when observers were not familiar with a given snow core sampler.  相似文献   
16.
The scientific objectives of a geodetic experiment based on a network of landers, such as NEIGE (NEtlander Ionosphere and Geodesy Experiment) are to improve the current knowledge of Mars' interior and atmosphere dynamics. Such a network science experiment allows monitoring the motions of the Martian rotation axis with a precision of a few centimeters (or milli-arc-seconds (mas)) over annual and sub-annual periods. Thereto, besides radio tracking of a Mars orbiter from the Earth, radio Doppler shifts between this orbiter and several landers at the planet's surface will be performed. From the analysis of these radio Doppler data, it is possible to reconstruct the orbiter motion and Mars' orientation in space. The errors on the orbit determination (position and velocity of the orbiter) have an impact on the geodetic parameters determination from the Doppler shifts and must be removed from the signal in order to achieve a high enough accuracy. In this paper, we perform numerical simulations of the two Doppler signals involved in such an experiment to estimate the impact of the spacecraft angular momentum desaturations on the determination of Mars' orientation variations. The attitude control of the orbiter needs such desaturation maneuvers regularly repeated. They produce velocity variations that must be taken into account when determining the orbit. For our simulations, we use a priori models of the Martian rotation and introduce the spacecraft velocity variations induced by each desaturation event. By a least-squares adjustment of the simulated Doppler signals, we then estimate the orbiter velocity variations and the parameters of the Mars' rotation model. We show that these velocity variations are ill resolved when the spacecraft is not tracked, therefore requiring a near-continuous tracking from the Earth to accurately determine the orbit. In such conditions we show that only 15- of lander-orbiter tracking per week allows recovering Mars' orientation parameters with a precision of a few mas over a period of 1 Martian year.  相似文献   
17.
On its highly elliptical 24 h orbit around Venus, the Venus Express (VEX) spacecraft briefly reaches a periapsis altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008, October 2009, February and April 2010, for which the periapsis altitude was lowered to the 186–176 km altitude range in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the periapsis pass, allowing us to infer total atmospheric mass density at the periapsis altitude. A Precise Orbit Determination (POD) of the VEX motion is performed through an iterative least-squares fitting process to the Doppler tracking data, acquired by the VEX radioscience experiment (VeRa). The drag acceleration is modelled using an initial atmospheric density model (VTS3 model, Hedin, A.E., Niemann, H.B., Kasprzak, W.T., Seiff, A. [1983]. J. Geophys. Res. 88, 73–83). A scale factor of the drag acceleration is estimated for each periapsis pass, which scales Hedin’s density model in order to best fit the radio tracking data. Reliable density scale factors have been obtained for 10 passes mainly from the second (October 2009) and third (April 2010) VExADE campaigns, which indicate a lower density by a factor of about 1.8 than Hedin’s model predicts. These first ever in situ polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus’ thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements (Müller-Wodarg et al., in preparation). The preliminary results of the VExADE campaigns show that it is possible to obtain with the POD technique reliable estimates of Venus’ upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from the planned further lowering of VEX pericenter altitude to below 170 km.  相似文献   
18.
19.
We have analyzed nitrogen, neon and argon abundances and isotopic ratios in target material exposed in space for 27 months to solar wind (SW) irradiation during the Genesis mission. SW ions were extracted by sequential UV (193 nm) laser ablation of gold-plated material, purified separately in a dedicated line, and analyzed by gas source static mass spectrometry. We analyzed gold-covered stainless steel pieces from the Concentrator, a device that concentrated SW ions by a factor of up to 50. Despite extensive terrestrial N contamination, we could identify a non-terrestrial, 15N-depleted nitrogen end-member that points to a 40% depletion of 15N in solar-wind N relative to inner planets and meteorites, and define a composition for the present-day Sun (15N/14N = [2.26 ± 0.67] × 10−3, 2σ), which is indistinguishable from that of Jupiter’s atmosphere. These results indicate that the isotopic composition of nitrogen in the outer convective zone of the Sun has not changed through time, and is representative of the protosolar nebula. Large 15N enrichments due to e.g., irradiation, low temperature isotopic exchange, or contributions from 15N-rich presolar components, are therefore required to account for inner planet values.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号