首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3369篇
  免费   153篇
  国内免费   44篇
测绘学   86篇
大气科学   273篇
地球物理   722篇
地质学   1306篇
海洋学   240篇
天文学   605篇
综合类   12篇
自然地理   322篇
  2021年   39篇
  2020年   61篇
  2019年   81篇
  2018年   87篇
  2017年   99篇
  2016年   116篇
  2015年   100篇
  2014年   118篇
  2013年   175篇
  2012年   114篇
  2011年   169篇
  2010年   150篇
  2009年   198篇
  2008年   173篇
  2007年   168篇
  2006年   156篇
  2005年   137篇
  2004年   133篇
  2003年   99篇
  2002年   95篇
  2001年   67篇
  2000年   66篇
  1999年   61篇
  1998年   54篇
  1997年   56篇
  1996年   54篇
  1995年   42篇
  1994年   28篇
  1993年   30篇
  1992年   27篇
  1991年   40篇
  1990年   22篇
  1989年   26篇
  1988年   31篇
  1987年   37篇
  1986年   23篇
  1985年   30篇
  1984年   27篇
  1983年   18篇
  1982年   27篇
  1981年   31篇
  1980年   28篇
  1979年   17篇
  1978年   15篇
  1977年   20篇
  1976年   17篇
  1975年   13篇
  1974年   26篇
  1973年   21篇
  1971年   14篇
排序方式: 共有3566条查询结果,搜索用时 609 毫秒
821.
822.
In this contribution, we highlight the importance of in-situ monazite geochronology linked to P−T modelling for identification of timescales of metamorphic processes. Barrovian-type micaschists, migmatites and augengneiss from the Gumburanjun dome in the southeastern extremity of the Gianbul dome, NW Himalaya, have been studied in order to correlate the early stages of Himalayan metamorphism at different crustal levels and infer the timing of anatexis. P−T−t paths are constrained through combined pseudosection modelling and in-situ and in-mount monazite and xenotime laser ablation–split-stream inductively coupled plasma-mass spectrometry. Petrography and garnet zoning combined with pseudosection modelling show that garnet-staurolite schists record burial from ~530 to 560°C and 5.5 kbar to ~630 to 660°C and 7 kbar; staurolite-kyanite schists from ~530 to 560°C and 5 kbar to ~670 to 680°C and 7−9 kbar; and garnet-kyanite migmatites from 540−570°C and 5 kbar to ~680 to 750°C and 7−10 kbar, probably also to >750°C and >9 kbar above the muscovite stability field. The decompression paths of garnet-staurolite schists indicate cooling on decompression, while garnet rim chemistry and local sillimanite growth point to a stage of re-equilibration at ~600 to 670°C and 4−6 kbar in some of the staurolite-kyanite schists, and at ~670 to 700°C and 6 kbar in garnet-kyanite migmatites. Some of the staurolite-kyanite schists and garnet-kyanite migmatites also contain andalusite or andalusite-cordierite. Monazite and xenotime were analysed in thin sections in garnet, staurolite and kyanite, and in the matrix; and in mounts. BSE images and compositional maps of monazite (xenotime was too small) show variable internal structures from homogeneous through patchy zoning with embayed to sharp boundaries. Two groups of samples can be identified on the basis of the presence or absence of c. 44 − 37 Ma ages. The first group of samples—two garnet-staurolite schists—recorded only c. 31 − 27 Ma ages in porphyroblasts and no c. 40 Ma ages. The second group (samples of staurolite-kyanite schist, garnet-kyanite migmatites, augengneiss) have both the older, c. 44 − 37 Ma monazite ages in porphyroblasts and younger ages down to c. 22 Ma. These significantly different ranges of ages from porphyroblasts of 44−37 Ma, and 31−27 Ma, are interpreted as the duration of prograde P−T paths in Eocene and Oligocene, and indicate diachronous two-stage burial of rocks. Early migmatization occurred at 38 Ma. The c. 29 Ma is interpreted as the time when rocks from the lower and middle crustal levels were partially exhumed and came in to contact with rocks that were downgoing at this time. Localized monazite recrystallization is as young as 26−24 Ma. The youngest ages of 23−22 Ma are related to leucogranite emplacement.  相似文献   
823.
824.
One pre-requisite for the construction of a global chromium isotope mass balance is detailed understanding of Cr isotope systematics in the critical zone where redox-processes can modify the isotope signature of geogenic Cr input into the hydrosphere. A Cr isotope inventory of bedrock, soil, and runoff was performed in a Central European headwater catchment underlain by amphibolite, situated in the vicinity of two previously studied catchments underlain by different bedrock types (serpentinite and leucogranite). Fresh bedrock in the amphibolite catchment NAZ contained ~300 mg/kg Cr, serpentinite at PLB contained ~800 mg/kg Cr, and leucogranite at LYS contained ~2 mg/kg Cr. Monthly hydrochemical monitoring at all three sites revealed higher Cr(VI) export fluxes in winter than in summer. NAZ was characterized by a distinct seasonality in the δ53Cr values, with minima during winter/spring snowmelts (−0.35‰) and maxima during dry summers (0.40‰). Similar seasonality in δ53Cr values had been reported from PLB and LYS. Bedrock at all three sites had similar Cr isotope composition close to −0.10‰, a value indistinguishable from the δ53Cr value of bulk silicate Earth (BSE). Positive mean δ53Cr value of NAZ runoff indicated Cr-isotope fractionations during weathering of geogenic Cr(III), combined with adsorption of the resulting Cr(VI) on soil particles during pedogenesis. However, the mass-weighted mean δ53Cr of NAZ runoff was lower (−0.08‰), indistinguishable from the Cr isotope signature of bedrock. The same pattern of lower mass-weighted mean δ53Cr values of runoff, compared to arithmetic mean δ53Cr values of runoff, were observed also at PLB and LYS. We suggest that elevated Cr runoff fluxes in winter remove some of the residual isotopically light Cr that accumulated in the soil during summer. Seasonality in runoff δ53Cr values appears to be a relatively widespread phenomenon, de-coupled from Cr availability for chemical weathering.  相似文献   
825.
The effect of soil structure on hydraulic pedotransfer functions (PTFs) in tropical soils with similar mineralogy and texture has not been well documented. Structurally contrasting soils from representative locations in southeastern Nigeria were analyzed for moisture retention at 0, 6, 10, 33, 100, 300 and 1500 kPa among other properties. They were grouped by depth (topsoils or subsoils) and also by their structural degradation status into low‐ and high‐stability soils, corresponding to organic matter (OM):[silt + clay] of <7.5 and >7.5%, respectively. Soil depth and structural stability influenced the soil moisture characteristic curves. The data were fitted to three tropical point PTFs, but none of them proved appropriate for predicting moisture retention in the soils. We therefore derived new ones using multiple linear stepwise regressions before and after the dataset grouping and compared their performances by means of cross‐validation. Moisture retention in the soils (sand content, 73.2–93.8%) could not be calibrated from texture and OM concentration alone, until when bulk density, total porosity and microporosity were included among the regressors. Microporosity's role was particularly outstanding at all matric potentials but the 1500 kPa. The ensuing PTFs represent a good fit for the soil moisture retention data. The two grouping strategies resulted in lower SE of the estimates in some cases, but this did not enhance the performances of the concerned PTFs. At the 1500 kPa, however, the PTF incorporating all datasets performed better than separate PTFs for topsoils/subsoils but worse than the one for high‐stability soils. Information on soil structure can therefore benefit PTF derivation for kaolinite‐dominated, coarse‐textured tropical soils at all the matric potentials considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
826.
Geotechnical and Geological Engineering - An investigation performed on the interactions of silty soil treated with cement or lime demonstrates the strong relationship between microstructural...  相似文献   
827.
Geotechnical and Geological Engineering - This research focuses on assessing the most important physical and mechanical properties of rocks that were quarried from the north-eastern part of the...  相似文献   
828.
We present evidence of land-level change resulting from the 2016 Mw 7.6 Chiloé earthquake from tidal wetlands along the southern coastline of Isla de Chiloé, Chile, to test criteria for the detection of low-level, <0.1 m, coseismic land-level change. In order to record coseismic land-level change in tidal wetland sediments, both the creation and preservation thresholds must be exceeded. High-resolution diatom analyses of sediment blocks at two tidal marshes reveal that the 2016 earthquake exceeded the creation threshold and a statistically significant change in diatom assemblage is recorded. In contrast, the preservation threshold was not exceeded and the record of coseismic land-level motion is not preserved at any location visited. After nine months, interseismic and coseismic changes are statistically indistinguishable. The most sensitive part of the tidal wetland is not consistent between research locations, possibly as a result of changes in sedimentation after the earthquake. We compare records of change from great earthquakes in Alaska with the record from the Chiloé earthquake to explore the detection limit. We propose that coastal palaeoseismological records are highly likely to underestimate the frequency of major (Mw 7–8) earthquakes, with important implications for recurrence intervals and assessment of future seismic hazards.  相似文献   
829.
Bolshaya Imandra, the northern sub-basin of Lake Imandra, was investigated by a hydro-acoustic survey followed by sediment coring down to the acoustic basement. The sediment record was analysed by a combined physical, biogeochemical, sedimentological, granulometrical and micropalaeontological approach to reconstruct the regional climatic and environmental history. Chronological control was obtained by 14C dating, 137Cs, and Hg markers as well as pollen stratigraphy and revealed that the sediment succession offers the first continuous record spanning the Lateglacial and Holocene for this lake. Following the deglaciation prior to c. 13 200 cal. a BP, the lake's sub-basin initially was occupied by a glacifluvial river system, before a proglacial lake with glaciolacustrine sedimentation established. Rather mild climate, a sparse vegetation cover and successive retreat of the Scandinavian Ice Sheet (SIS) from the lake catchment characterized the Bølling/Allerød interstadial, lasting until 12 710 cal. a BP. During the subsequent Younger Dryas chronozone, until 11 550 cal. a BP, climate cooling led to a decrease in vegetation cover and a re-advance of the SIS. The SIS disappeared from the catchment at the Holocene transition, but small glaciers persisted in the mountains at the eastern lake shore. During the Early Holocene, until 8400 cal. a BP, sedimentation changed from glaciolacustrine to lacustrine and rising temperatures caused the spread of thermophilous vegetation. The Middle Holocene, until 3700 cal. a BP, comprises the regional Holocene Thermal Maximum (8000–4600 cal. a BP) with relatively stable temperatures, denser vegetation cover and absence of mountain glaciers. Reoccurrence of mountain glaciers during the Late Holocene, until 30 cal. a BP, presumably results from a slight cooling and increased humidity. Since c. 30 cal. a BP Lake Imandra has been strongly influenced by human impact, originating in industrial and mining activities. Our results are in overall agreement with vegetation and climate reconstructions in the Kola region.  相似文献   
830.
Spatial and temporal distribution patterns of zooplankton are highly variable in the Northern Benguela Upwelling System. We studied the distribution of zooplankton (size class ≥ 0.33 mm) and used field data from four cruises that took place between March 2008 and February 2011, as well as simulation results of a regional ecosystem model. Remotely sensed sea surface temperatures (SST) and surface chlorophyll concentrations were analysed to investigate environmental influences on zooplankton biomass. The Intense Benguela Upwelling Index showed a distinct seasonal signal throughout the years and the highest upwelling peaks in August/September. Even though surface chlorophyll concentrations were very variable throughout the year, the highest concentrations were always detected in September, following the upwelling of nutrient‐rich water. In field catches, zooplankton biomass concentration in the upper 200 m was highest above the outer shelf and shelf‐break in December 2010 and February 2011, i.e. 6 months after the upwelling peaks. In contrast, zooplankton biomass simulated by the model in the surface water was highest in September. In March/April, biomass maxima were typically measured in the field at intermediate water depths, but the vertical distribution was also affected by extensive oxygen minimum zones. The ecosystem model reproduced this vertical pattern. Although general trends were similar, simulation data of zooplankton standing stocks overestimated the field data by a factor of 3. In upwelling systems, food webs are generally considered to be short and dominated by large cells. However, our field data indicate more small‐sized zooplankton organisms above the shelf than offshore.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号