首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68843篇
  免费   1214篇
  国内免费   533篇
测绘学   1716篇
大气科学   5497篇
地球物理   14272篇
地质学   22451篇
海洋学   5887篇
天文学   15653篇
综合类   144篇
自然地理   4970篇
  2020年   522篇
  2019年   564篇
  2018年   1002篇
  2017年   998篇
  2016年   1457篇
  2015年   1092篇
  2014年   1516篇
  2013年   3376篇
  2012年   1585篇
  2011年   2402篇
  2010年   2052篇
  2009年   3066篇
  2008年   2785篇
  2007年   2532篇
  2006年   2580篇
  2005年   2233篇
  2004年   2337篇
  2003年   2134篇
  2002年   2037篇
  2001年   1823篇
  2000年   1797篇
  1999年   1546篇
  1998年   1535篇
  1997年   1521篇
  1996年   1313篇
  1995年   1236篇
  1994年   1111篇
  1993年   1014篇
  1992年   963篇
  1991年   833篇
  1990年   1024篇
  1989年   866篇
  1988年   779篇
  1987年   955篇
  1986年   834篇
  1985年   1043篇
  1984年   1198篇
  1983年   1139篇
  1982年   1034篇
  1981年   997篇
  1980年   855篇
  1979年   828篇
  1978年   880篇
  1977年   806篇
  1976年   763篇
  1975年   704篇
  1974年   721篇
  1973年   726篇
  1972年   448篇
  1971年   396篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The long‐term (10–100 years) evolution of tidal channels is generally considered to interact with the bio‐geomorphic evolution of the surrounding intertidal platform. Here we studied how the geometric properties of tidal channels (channel drainage density and channel width) change as (1) vegetation establishes on an initially bare intertidal platform and (2) sediment accretion on the intertidal platform leads to a reduction in the tidal prism (i.e. water volume that during a tidal cycle floods to and drains back from the intertidal platform). Based on a time series of aerial photographs and digital elevation models, we derived the channel geometric properties at different time steps during the evolution from an initially low‐elevated bare tidal flat towards a high‐elevated vegetated marsh. We found that vegetation establishment causes a marked increase in channel drainage density. This is explained as the friction exerted by patches of pioneer vegetation concentrates the flow in between the vegetation patches and promotes there the erosion of channels. Once vegetation has established, continued sediment accretion and tidal prism reduction do not result in significant further changes in channel drainage density and in channel widths. We hypothesize that this is explained by a partitioning of the tidal flow between concentrated channel flow, as long as the vegetation is not submerged, and more homogeneous sheet flow as the vegetation is deeply submerged. Hence, a reduction of the tidal prism due to sediment accretion on the intertidal platform, reduces especially the volume of sheet flow (which does not affect channel geometry), while the concentrated channel flow (i.e. the landscape forming volume of water) is not much affected by the tidal prism reduction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
992.
Llullaillaco is one of a chain of Quaternary stratovolcanoes that defines the present Andean Central Volcanic Zone (CVZ), and marks the border between Chile and Argentina/Bolivia. The current edifice is constructed from a series of thick dacitic lava flows, forming the second tallest active volcano in the world (6739 m). K–Ar and new biotite laser 40Ar/39Ar step-heating dates indicate that the volcano was constructed during the Pleistocene (≤1.5 Ma), with a youngest date of 0.048±0.012 Ma being recorded for a fresh dacite flow that descends the southern flank. Additional 40Ar/39Ar measurements for andesitic and dacitic lava flows from the surrounding volcanic terrain yield dates of between 11.94±0.13 Ma and 5.48±0.07 Ma, corresponding to an extended period of Miocene volcanism which defines much of the landscape in this region. Major- and trace-element compositions of lavas from Llullaillaco are typical of Miocene–Pleistocene volcanic rocks from the western margin of the CVZ, and are related to relatively shallow-dipping subduction of the Nazca plate beneath northern Chile and Argentina.Oversteepening of the edifice by stacking of thick, viscous, dacitic lava flows resulted in collapse of its southeastern flank to form a large volcanic debris avalanche. Biotite 40Ar/39Ar dating of lava blocks from the avalanche deposit indicate that collapse occurred at or after 0.15 Ma, and may have been triggered by extrusion of a dacitic flow similar to the one dated at 0.048±0.012 Ma. The avalanche deposits are exceptionally well preserved due to the arid climate, and prominent levées, longitudinal ridges, and megablocks up to 20-m diameter are observed.The avalanche descended 2.8 km vertically, and bifurcated around an older volcano, Cerro Rosado, before debouching onto the salt flats of Salina de Llullaillaco. The north and south limbs of the avalanche traveled 25 and 23 km, respectively, and together cover an area of approximately 165 km2. Estimates of deposit volume are hampered by a lack of thickness information except at the edges, but it is likely to be between 1 and 2 km3. Equivalent coefficients of friction of 0.11 and 0.12, and excess travel distances of 20.5 and 18.5 km, are calculated for the north and south limbs, respectively. The avalanche ascended 400 m where it broke against the western flank of Cerro Rosado, and a minimum flow velocity of 90 m s−1 can be calculated at this point; lower velocities of 45 m s−1 are calculated where distal toes ascend 200 m slopes.It is suggested that the remaining precipitous edifice has a high probability for further avalanche collapse in the event of renewed volcanism.  相似文献   
993.
994.
An integral approach to bedrock river profile analysis   总被引:5,自引:0,他引:5  
Bedrock river profiles are often interpreted with the aid of slope–area analysis, but noisy topographic data make such interpretations challenging. We present an alternative approach based on an integration of the steady‐state form of the stream power equation. The main component of this approach is a transformation of the horizontal coordinate that converts a steady‐state river profile into a straight line with a slope that is simply related to the ratio of the uplift rate to the erodibility. The transformed profiles, called chi plots, have other useful properties, including co‐linearity of steady‐state tributaries with their main stem and the ease of identifying transient erosional signals. We illustrate these applications with analyses of river profiles extracted from digital topographic datasets. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
995.
Atmospheric wind speeds and their fluctuations at different locations (onshore and offshore) are examined. One of the most striking features is the marked intermittency of probability density functions (PDF) of velocity differences, no matter what location is considered. The shape of these PDFs is found to be robust over a wide range of scales which seems to contradict the mathematical concept of stability where a Gaussian distribution should be the limiting one. Motivated by the non-stationarity of atmospheric winds it is shown that the intermittent distributions can be understood as a superposition of different subsets of isotropic turbulence. Thus we suggest a simple stochastic model to reproduce the measured statistics of wind speed fluctuations.  相似文献   
996.
We analyse the regional variability in observed sea surface height (SSH), sea surface temperature (SST) and ocean colour (OC) from the ESA Climate Change Initiative datasets over the period 1993–2011. The analysis focuses on the signature of the ocean large-scale climate fluctuations driven by the atmospheric forcing and do not address the mesoscale variability. We use the ECCO version 4 ocean reanalysis to unravel the role of ocean transport and surface buoyancy fluxes in the observed SSH, SST and OC variability. We show that the SSH regional variability is dominated by the steric effect (except at high latitude) and is mainly shaped by ocean heat transport divergences with some contributions from the surface heat fluxes forcing that can be significant regionally (confirming earlier results). This is in contrast with the SST regional variability, which is the result of the compensation of surface heat fluxes by ocean heat transport in the mixed layer and arises from small departures around this background balance. Bringing together the results of SSH and SST analyses, we show that SSH and SST bear some common variability. This is because both SSH and SST variability show significant contributions from the surface heat fluxes forcing. It is evidenced by the high correlation between SST and buoyancy-forced SSH almost everywhere in the ocean except at high latitude. OC, which is determined by phytoplankton biomass, is governed by the availability of light and nutrients that essentially depend on climate fluctuations. For this reason, OC shows significant correlation with SST and SSH. We show that the correlation with SST displays the same pattern as the correlation with SSH with a negative correlation in the tropics and subtropics and a positive correlation at high latitude. We discuss the reasons for this pattern.  相似文献   
997.
The spatial distribution of hydraulic properties in the subsurface controls groundwater flow and solute transport. However, many approaches to modeling these distributions do not produce geologically realistic results and/or do not model the anisotropy of hydraulic conductivity caused by bedding structures in sedimentary deposits. We have developed a flexible object-based package for simulating hydraulic properties in the subsurface—the Hydrogeological Virtual Realities (HyVR) simulation package. This implements a hierarchical modeling framework that takes into account geological rules about stratigraphic bounding surfaces and the geometry of specific sedimentary structures to generate realistic aquifer models, including full hydraulic-conductivity tensors. The HyVR simulation package can create outputs suitable for standard groundwater modeling tools (e.g., MODFLOW), is written in Python, an open-source programming language, and is openly available at an online repository. This paper presents an overview of the underlying modeling principles and computational methods, as well as an example simulation based on the Macrodispersion Experiment site in Columbus, Mississippi. Our simulation package can currently simulate porous media that mimic geological conceptual models in fluvial depositional environments, and that include fine-scale heterogeneity in distributed hydraulic parameter fields. The simulation results allow qualitative geological conceptual models to be converted into digital subsurface models that can be used in quantitative numerical flow-and-transport simulations, with the aim of improving our understanding of the influence of geological realism on groundwater flow and solute transport.  相似文献   
998.
In elastic media, finite-difference (FD) implementations of free-surface (FS) boundary conditions on partly staggered grid (PSG) use the highly dispersive vacuum formulation (VPSG). The FS boundary is embedded into a “vacuum” grid layer (null Lame’s constants and negligible density values) where the discretized equations of motion allow computing surface displacements. We place a new set of compound (stress-displacement) nodes along a planar FS and use unilateral mimetic FD discretization of the zero-traction conditions for displacement computation (MPSG). At interior nodes, MPSG reduces to standard VPSG methods and applies fourth-order centered FD along cell diagonals for staggered differentiation combined with nodal second-order FD in time. We perform a dispersion analysis of these methods on a Lamb’s problem and estimate dispersion curves from the phase difference of windowed numerical Rayleigh pulses at two FS receivers. For a given grid sampling criterion (e.g., six or ten nodes per reference S wavelength λ S), MPSG dispersion errors are only a quarter of the VPSG method. We also quantify root-mean-square (RMS) misfits of numerical time series relative to analytical waveforms. MPSG RMS misfits barely exceed 10 % when nine nodes sample the minimum S wavelength $\lambda _{\text {MIN}}^{\mathrm {S}}$ in transit (along distances $\sim $ 145 $\lambda _{\text {MIN}}^{\mathrm {S}}$ ). In same tests, VPSG RMS misfits exceed 70 %. We additionally compare MPSG to a consistently fourth-order mimetic method designed on a standard staggered grid. The latter equates the former’s dispersion errors on grids twice denser and shows higher RMS precision only on grids with six or less nodes per $\lambda _{\text {MIN}}^{\mathrm {S}}$ .  相似文献   
999.
The Lanhualing tungsten-molybdenum deposit is a skarn-type deposit located in Ningguo county, Anhui province. This deposit is mainly hosted in the Yinzhubu Formation and the Yanwashan Formation of Ordovician, and genetically related to the Lanhualing granite. The Lanhualing granite belongs to high-K calc-alkaline series with high alkali (Na2O+K2O=4.00%-7.03%), SiO2 (67.87%-74.92%) and MgO (0.62%-1.23%) contents. The granitic rocks show right-dipping chondrite normalized REE patterns with weak δEu anomalies. The granitic rocks are relatively enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE). The ore-bearing granite was dated at 148.17±0.94 Ma by LA-ICP-MS zircon U-Pb method. The late Yanshanian is the main tungsten mineralization epoch in the South Anhui-north Jiangxi area; and indeed, the Dongyuan, Zhuxi, Yangchuling, Dahutang and other large and super-large tungsten deposits were formed in this period. Geochemical Characteristics of the Lanhualing granite indicate a crustal source but with mantle input under tectonic regime of compression thickening. ©, 2015, Science Press. All right reserved.  相似文献   
1000.
The development of the Lancaster Sound Trough Mouth Fan (TMF) and glacial history in Arctic Canada were studied using a high‐resolution seismic profile across the entire fan and two piston cores. Stacked tills separated by erosion surfaces on the shelf pass seaward through till deltas into thick transparent glacigenic debris flow (GDF) deposits on the slope, separated by thin, well‐stratified glaciomarine layers. An age model was built by ties to the Ocean Drilling Program Site 645. The deepest GDF on the seismic profile was indicative of the onset of shelf‐crossing glaciation in the Early Pleistocene. The transition of the growth of Lancaster Sound TMF from an aggradational sequence (unit M) to an aggradational–progradational sequence (unit F) occurred at the Middle Pleistocene transition in glacial cyclicity. In the most recent glacial cycle, GDF sheets were deposited during Heinrich events 4 and 2 according to the correlation of the main detrital carbonate beds in two piston cores. The outmost till wedge reflects the maximum advance of the grounding glacier, far seaward of previously proposed Last Glacial Maximum ice extent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号