首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3394篇
  免费   126篇
  国内免费   46篇
测绘学   86篇
大气科学   271篇
地球物理   722篇
地质学   1308篇
海洋学   240篇
天文学   605篇
综合类   12篇
自然地理   322篇
  2023年   14篇
  2021年   41篇
  2020年   61篇
  2019年   81篇
  2018年   87篇
  2017年   99篇
  2016年   117篇
  2015年   100篇
  2014年   119篇
  2013年   175篇
  2012年   114篇
  2011年   168篇
  2010年   150篇
  2009年   198篇
  2008年   173篇
  2007年   169篇
  2006年   154篇
  2005年   137篇
  2004年   133篇
  2003年   98篇
  2002年   93篇
  2001年   67篇
  2000年   66篇
  1999年   59篇
  1998年   53篇
  1997年   55篇
  1996年   54篇
  1995年   42篇
  1994年   28篇
  1993年   30篇
  1992年   27篇
  1991年   40篇
  1990年   22篇
  1989年   27篇
  1988年   31篇
  1987年   38篇
  1986年   23篇
  1985年   31篇
  1984年   27篇
  1983年   18篇
  1982年   27篇
  1981年   31篇
  1980年   28篇
  1979年   17篇
  1978年   15篇
  1977年   20篇
  1976年   17篇
  1974年   26篇
  1973年   21篇
  1971年   14篇
排序方式: 共有3566条查询结果,搜索用时 15 毫秒
111.
112.
113.
We report the discovery of the first probable Galactic [WN] central star of a planetary nebula (CSPN). The planetary nebula candidate was found during our systematic scans of the AAO/UKST Hα Survey of the Milky Way. Subsequent confirmatory spectroscopy of the nebula and central star reveals the remarkable nature of this object. The nebular spectrum shows emission lines with large expansion velocities exceeding 150 km s−1, suggesting that perhaps the object is not a conventional planetary nebula. The central star itself is very red and is identified as being of the [WN] class, which makes it unique in the Galaxy. A large body of supplementary observational data supports the hypothesis that this object is indeed a planetary nebula and not a Population I Wolf–Rayet star with a ring nebula.  相似文献   
114.
We present warm dark matter (WDM) as a possible solution to the missing satellites and angular momentum problem in galaxy formation and introduce improved initial conditions for numerical simulations of WDM models, which avoid the formation of unphysical haloes found in earlier simulations. There is a hint, that because of that the mass function of satellite haloes has been overestimated so far, pointing to higher values for the WDM particle mass. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
115.
Abstract— In the early morning hours of December 13, 2002, a bright Geminid fireball with an absolute magnitude of ?9.2 ± 0.5 was observed from Southern Saskatchewan, Canada. The fireball displayed distinct small‐scale oscillations in brightness, or flickering, indicative of the parent meteoroid being both non‐spherical and rotating. Using the light curve derived from a calibrated radiometer, we determine a photometric mass of 0.429 ± 0.15 kg for the meteoroid, and we estimate from its initial rotation rate of some 6 Hz that the meteoroid was ejected from the parent body (3200) Phaethon some 2500 ± 500 years ago. We find that 70% of Geminid fireballs brighter than magnitude ?3 display distinct flickering effects, a value that is in stark contrast to the 18% flickering rate exhibited by sporadic fireballs. The high coincidence of flickering and the deep atmospheric penetration of Geminid fireballs are suggestive of Geminid meteoroids having a highly resilient structure, a consequence, we suggest, of their having suffered a high degree of thermal processing. The possibility of Gemind material surviving atmospheric ablation and being sampled is briefly discussed, but the likelihood of collecting and identifying any such material is admittedly very small.  相似文献   
116.
The relation between mass loss rate and pulsation period in carbon Miras is discussed. The dust mass loss rate is very low (about 2 × 10–10 M/yr) up to aboutP = 380 days, where there is a sudden increase. ForP > 400 days there is a linear relation between logM andP. The change in the mass loss rate near 380 days may be related to radiation pressure on dust becoming effective in driving the outflow.  相似文献   
117.
Perspectives for the Radio-Optical Telescope 54/32/2.6 are given for scientific research in radioastronomy. Its characteristics and potential scientific fields are summarized in the frame of the present French-Armenian collaboration. A 3-phase upgrade plan including a detailed technical evaluation of the antenna is presented.Published in Astrofizika, Vol. 38, No. 4, pp. 645–648, October–December, 1995.  相似文献   
118.
The Adams County, Colorado, H5 chondrite contains a lithic fragment, 1 cm in size, that is texturally and mineralogically quite different from the chondritic host. It is composed of: a groundmass of fine-grained euhedral to subhedral olivine (3–15 μm) and interstitial glass enclosing larger olivine and pyroxene grains (0.15-0.5 mm; about 15 vol %); an assemblage of enstatite grains (subfragment within) and an assemblage of olivine plus orthopyroxene (a second subfragment); and about 11 vol % grains of mixed troilite and nickel-iron metal. Analyses yielded these results: (i) olivine grains of the fragment groundmass have a compositional range (Fa12–45) and most grains contain substantial CaO and Cr2O3 (~ 0.20 and 0.30 avg. wt%, respectively); interstitial glass has ~ 55 wt% SiO2; (ii) larger olivine grains of the fragment are similarly high in CaO and Cr2O3 and also have a wide FeO/MgO range; one unusual pyroxene is an Mg-rich pigeonite; (iii) the metal is martensite in composition (11–14 wt% Ni); and (iv) major and trace element analyses by INAA indicate an H-group bulk composition for the entire 1 cm lithic fragment. On the basis of its texture and bulk and mineral compositions, the fragment is interpreted to represent unequilibrated H-group material that was partly melted by impact. The Ca- and Cr-enriched groundmass olivine and interstitial glass resulted from rapid crystallization of the chondritic melt. The Ca- and Cr-enriched larger silicate grains, including the enstatite sub-fragment and the pigeonite grain, are residual, unmelted clasts from the target material (this is supported by the presence of similar material in actual H3 chondrites). Further impact brecciation of the clast-laden melt material, and resultant impact-splashing accounts for the presence of the fragment in the H-group Adams County host and documents the coexistence of unequilibrated and equilibrated H-group material as surface regolith on one parent body.  相似文献   
119.
Investigations of the zodiacal dust cloud give evidence for a significant contribution of asteroidal dust to the interplanetary dust cloud, a result which can now be compared to measurements of the ULYSSES dust detector during its passage of the asteroid belt. Especially we discuss the ULYSSES data with respect to the IRAS dust bands and consider geometric selection effects for the detector. From calculations of radiation pressure forces, we conclude that particles in the IRAS dust bands with massesm≥ 10−12g will stay in bound orbits after their release from asteroid fragmentation. This is already in the mass range (10−16–10−7g) of particles detectable with the dust detector onboard ULYSSES. The absence of these particles in the ULYSSES data cannot be explained exclusively in terms of their small detection probability. Thus we conclude that the size distribution of particles in the IRAS dust bands most probably cannot be continued to the submicrometer range. Concerning the global structure of the inner zodiacal cloud (i.e., about solar distancer< 3.5 AU) the ULYSSES data are not inconsistent with present models. Recent estimates of the total mass of the interplanetary cloud require a dust production rate of about 1014g/year of which a significant amount is assumed to result from the asteroids. Our estimate for the production of dust particles in an IRAS dust band, based on the assumption that the dust band results from a single destruction of an asteroid of 100 km size, yields a production rate of 1010g/year. Other models of the IRAS dust bands suggest production rates up to 1012g/year and also cannot provide a significant source of the dust cloud.  相似文献   
120.
In this paper, we compare the U‐Pb zircon age distribution pattern of sample 14311 from the Apollo 14 landing site with those from other breccias collected at the same landing site. Zircons in breccia 14311 show major age peaks at 4340 and 4240 Ma and small peaks at 4110, 4030, and 3960 Ma. The zircon age patterns of breccia 14311 and other Apollo 14 breccias are statistically different suggesting a separate provenance and transportation history for these breccias. This interpretation is supported by different U‐Pb Ca‐phosphate and exposure ages for breccia 14311 (Ca‐phosphate age: 3938 ± 4 Ma, exposure age: ~550–660 Ma) from the other Apollo 14 breccias (Ca‐phosphate age: 3927 ± 2 Ma, compatible with the Imbrium impact, exposure age: ~25–30 Ma). Based on these observations, we consider two hypotheses for the origin and transportation history of sample 14311. (1) Breccia 14311 was formed in the Procellarum KREEP terrane by a 3938 Ma‐old impact and deposited near the future site of the Imbrium basin. The breccia was integrated into the Fra Mauro Formation during the deposition of the Imbrium impact ejecta at 3927 Ma. The zircons were annealed by mare basalt flooding at 3400 Ma at Apollo 14 landing site. Eventually, at approximately 660 Ma, a small and local impact event excavated this sample and it has been at the surface of the Moon since this time. (2) Breccia 14311 was formed by a 3938 Ma‐old impact. The location of the sample is not known at that time but at 3400 Ma, it was located nearby or buried by hot basaltic flows. It was transported from where it was deposited to the Apollo 14 landing site by an impact at approximately 660 Ma, possibly related to the formation of the Copernicus crater and has remained at the surface of the Moon since this event. This latter hypothesis is the simplest scenario for the formation and transportation history of the 14311 breccia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号