首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6080篇
  免费   324篇
  国内免费   25篇
测绘学   315篇
大气科学   427篇
地球物理   2190篇
地质学   2013篇
海洋学   293篇
天文学   877篇
综合类   42篇
自然地理   272篇
  2022年   45篇
  2021年   121篇
  2020年   130篇
  2019年   92篇
  2018年   296篇
  2017年   263篇
  2016年   397篇
  2015年   308篇
  2014年   367篇
  2013年   426篇
  2012年   347篇
  2011年   340篇
  2010年   297篇
  2009年   281篇
  2008年   243篇
  2007年   203篇
  2006年   180篇
  2005年   126篇
  2004年   153篇
  2003年   115篇
  2002年   111篇
  2001年   115篇
  2000年   72篇
  1999年   59篇
  1998年   103篇
  1997年   71篇
  1996年   47篇
  1995年   48篇
  1994年   54篇
  1993年   41篇
  1992年   54篇
  1991年   45篇
  1990年   62篇
  1989年   47篇
  1988年   30篇
  1987年   34篇
  1986年   34篇
  1985年   32篇
  1984年   31篇
  1983年   34篇
  1982年   37篇
  1981年   30篇
  1980年   32篇
  1979年   29篇
  1978年   31篇
  1977年   29篇
  1975年   27篇
  1973年   31篇
  1972年   29篇
  1971年   40篇
排序方式: 共有6429条查询结果,搜索用时 31 毫秒
881.
The occurrence of flood and drought frequency is highly correlated with the temporal fluctuations of streamflow series; understanding of these fluctuations is essential for the improved modeling and statistical prediction of extreme changes in river basins. In this study, the complexity of daily streamflow fluctuations was investigated by using multifractal detrended fluctuation analysis (MF-DFA) in a large heterogeneous lake basin, the Poyang Lake basin in China, and the potential impacts of human activities were also explored. Major results indicate that the multifractality of streamflow fluctuations shows significant regional characteristics. In the study catchment, all the daily streamflow series present a strong long-range correlation with Hurst exponents bigger than 0.8. The q-order Hurst exponent h(q) of all the hydrostations can be characterized well by only two parameters: a (0.354 ≤ a ≤ 0.384) and b (0.627 ≤ b ≤ 0.677), with no pronounced differences. Singularity spectrum analysis pointed out that small fluctuations play a dominant role in all daily streamflow series. Our research also revealed that both the correlation properties and the broad probability density function (PDF) of hydrological series can be responsible for the multifractality of streamflow series that depends on watershed areas. In addition, we emphasized the relationship between watershed area and the estimated multifractal parameters, such as the Hurst exponent and fitted parameters a and b from the q-order Hurst exponent h(q). However, the relationship between the width of the singularity spectrum (Δα) and watershed area is not clear. Further investigation revealed that increasing forest coverage and reservoir storage can effectively enhance the persistence of daily streamflow, decrease the hydrological complexity of large fluctuations, and increase the small fluctuations.  相似文献   
882.
It was recently reported a regional warming in the intra-Americas region where sea surface temperature exhibited increases exceeding 0.15 °C/decade and an accelerated air temperature rise that could impact building energy demands per capita (EDC). Reanalysis data is used herein to quantify the impacts of these warming trends on EDC. Results of the analysis depict a Southern Greater Antilles and inland South America with a positive annual EDC rate of 1–5 kWh per year. The Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCP) 2.6 and 4.5 scenarios were selected to analyze energy demand changes in the twenty-first century. A multi-model ensemble forecasts an EDC increase of 9.6 and 23 kWh/month in the RCP2.6 and RCP4.5 at the end of the twenty-first century, which may increase average building cooling loads in the region by 7.57 GW (RCP2.6) and 8.15 GW (RCP4.5), respectively. Furthermore, 4 of 9 (RCP2.6) and 7 of 9 (RCP4.5) of the major countries in this region have EDCs ranging between 1887 and 2252 kWh/year at the end of this century. Therefore, increased energy production and improved energy infrastructure will be required to maintain ideal indoor building conditions at the end of the twenty-first century in these tropical coastal regions as consequence of a warmer climate.  相似文献   
883.
Walkability and livability in cities can be enhanced by creating comfortable environments in the streets. The profile of an urban street canyon has a substantial impact on outdoor thermal conditions at pedestrian level. This paper deals with the effect of asymmetrical street canyon profiles, common in the historical centre of Camagüey, Cuba, on outdoor thermal comfort. Temporal-spatial analyses are conducted using the Heliodon2 and the RayMan model, which enable the generation of accurate predictions about solar radiation and thermal conditions of urban spaces, respectively. On these models, urban settings are represented by asymmetrical street canyons with five different height-to-width ratios and four street axis orientations (N-S, NE-SW, E-W, SE-NW). Results are evaluated for daytime hours across the street canyon, by means of the physiologically equivalent temperature (PET index) which allows the evaluation of the bioclimatic conditions of outdoor environments. Our findings revealed that high profiles (façades) located on the east-facing side of N-S streets, on the southeast-facing side of NE-SW streets, on the south-facing side of E-W street, and on the southwest-facing side of SE-NW streets, are recommended to reduce the total number of hours under thermal stress. E-W street canyons are the most thermally stressed ones, with extreme PET values around 36 °C. Deviating from this orientation ameliorates the heat stress with reductions of up to 4 h in summer. For all analysed E-W orientations, only about one fifth of the street can be comfortable, especially for high aspect ratios (H/W > 3). Optimal subzones in the street are next to the north side of the E-W street, northwest side of the NE-SW street, and southwest side of the SE-NW street. Besides, when the highest profile is located on the east side of N-S streets, then the subzone next to the east-facing façade is recommendable for pedestrians. The proposed urban guidelines enable urban planners to create and renovate urban spaces which are more efficient in diminishing pedestrian thermal stress.  相似文献   
884.
In 2015, Central Europe experienced an unusually warm summer season. For a great majority of climatic stations around Slovakia, it had been the warmest summer ever recorded over their entire instrumental observation period. In this study, we investigate the mortality effects of hot days’ sequences during that particular summer on the Slovak population. In consideration of the range of available mortality data, the position of 2015 is analysed within the years 1996–2015. Over the given 20-year period, the summer heat spells of 2015 were by far the most severe from a meteorological point of view, and clearly the deadliest with the total of almost 540 excess deaths. In terms of impacts, an extraordinary 10-day August heat spell was especially remarkable. The massive lethal effects of heat would have likely been even more serious under normal circumstances, since the number of premature deaths appeared to be partially reduced due to a non-standard mortality pattern in the first quarter of the year. The heat spells of the extremely warm summer of 2015 in Slovakia are notable not just for their short-term response in mortality. It appears that in a combination with the preceding strong influenza season, they subsequently affected mortality conditions in the country in the following months up until the end of the year. The impacts described above were rather different for selected population subgroups (men and women, the elderly). Both separately and as a part of the annual mortality cycle, the 2015 summer heat spells may represent a particularly valuable source of information for public health.  相似文献   
885.
Theoretical and Applied Climatology - Heat wave (HW) events are becoming more frequent, and they have important consequences because of the negative effects they can have not only on the human...  相似文献   
886.
To evaluate the damaging effect of tropospheric ozone on vegetation, it is important to evaluate the stomatal uptake of ozone. Although the stomatal flux is a dominant pathway of ozone deposition onto vegetated surfaces, non-stomatal uptake mechanisms such as soil and cuticular deposition also play a vital role, especially when the leaf area index \({LAI}< 4\). In this study, we partitioned the canopy conductance into stomatal and non-stomatal components. To calculate the stomatal conductance of water vapour for sparse vegetation, we firstly partitioned the latent heat flux into effects of transpiration and evaporation using the Shuttleworth–Wallace (SW) model. We then derived the stomatal conductance of ozone using the Penman–Monteith (PM) theory based on the similarity to water vapour conductance. The non-stomatal conductance was calculated by subtracting the stomatal conductance from the canopy conductance derived from directly-measured fluxes. Our results show that for short vegetation (LAI \(=\) 0.25) dry deposition of ozone was dominated by the non-stomatal flux, which exceeded the stomatal flux even during the daytime. At night the stomatal uptake of ozone was found to be negligibly small. In the case of vegetation with \({LAI}\approx 1\), the daytime stomatal and non-stomatal fluxes were of the same order of magnitude. These results emphasize that non-stomatal processes must be considered even in the case of well-developed vegetation where cuticular uptake is comparable in magnitude with stomatal uptake, and especially in the case of vegetated surfaces with \({LAI}< 4\) where soil uptake also has a role in ozone deposition.  相似文献   
887.
??This article discusses the integration of two models, namely, the Physical Forest Fire Spread (PhFFS) and the High Definition Wind Model (HDWM), into a Geographical Information System-based interface. The resulting tool automates data acquisition, preprocesses spatial data, launches the aforementioned models and displays the corresponding results in a unique environment. Our implementation uses the Python language and Esri’s ArcPy library to extend the functionality of ArcMap 10.4. The PhFFS is a simplified 2D physical wildland fire spread model based on conservation equations, with convection and radiation as heat transfer mechanisms. It also includes some 3D effects. The HDWM arises from an asymptotic approximation of the Navier–Stokes equations, and provides a 3D wind velocity field in an air layer above the terrain surface. Both models can be run in standalone or coupled mode. Finally, the simulation of a real fire in Galicia (Spain) confirms that the tool developed is efficient and fully operational.  相似文献   
888.
The accumulation of sediment in river channels is a phenomenon that is not only influenced by the channel morphology, but also by the physical and geographical characteristics and the endogenous and exogenous processes taking place in the catchment. This paper presents an analysis of the impact the changes in lithological conditions have on the morphological and morphometric parameters of the Udava River channel and their relation to the channel accumulation forms representative of the river’s longitudinal profile as well as of its planform. Results document when accumulation forms occur and what is their spatial distribution within the longitudinal and cross-sectional river profiles. More resistant structures created sections with a lower degree of sedimentation, while in depression segments the degree of sedimentation was higher. With the increase in longitudinal slope, the impact of channel width on the average channel bar size increased. Also a difference in the accumulation was observed between the left and right bank which could be possibly explained by the impact of Coriolis force.  相似文献   
889.
In this paper we present first-time measurements of ozone profiles from a high altitude station in Quito, Ecuador (0.19°S, 78.4°W, and 2391 masl) taken from June 2014 to September 2015. We interpret ozone observations in the troposphere, tropopause, and stratosphere through a zonal comparison with data from stations in the Atlantic and Pacific (Natal and San Cristobal from the SHADOZ network). Tropospheric ozone concentrations above the Andes are lower than ozone over San Cristobal and Natal for similar time periods. Ozone variability and pollution layers are also reduced in the troposphere above the Andes. We explain these differences in terms of reduced contributions from the boundary layer and from horizontal transport. In the tropical tropopause layer, ozone is well-mixed up to near the cold point tropopause level. In this regard, our profiles do not show constraints to deep mixing above 14 km, as has been consistently observed at other tropical stations. Total column ozone and stratospheric column ozone are comparable among the three sites. However, the contribution of tropospheric column ozone to total column ozone is significantly lower above the Andes. Our comparisons provide a connection between observations from tropical stations in equatorial South America separated by the wide continental mass. Identified differences in ozone throughout the atmospheric column demonstrate the global benefit of having an ozone sounding station at the equatorial Andes in support of global monitoring networks.  相似文献   
890.
Theoretical and Applied Climatology - Seasonal forest fires in the Amazon are the largest source of pollutants in South America. The impacts of aerosols due to biomass burning on the temperature...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号