首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
大气科学   1篇
地球物理   6篇
地质学   11篇
海洋学   3篇
天文学   3篇
自然地理   2篇
  2022年   1篇
  2021年   2篇
  2019年   4篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1980年   2篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
21.
Abstract– We measured cosmogenic radionuclides and noble gases in the L3–6 chondrite breccia Northwest Africa (NWA) 869, one of the largest meteorite finds from the Sahara. Concentrations of 10Be, 26Al, and 36Cl in stone and metal fractions of six fragments of NWA 869 indicate a preatmospheric radius of 2.0–2.5 m. The 14C and 10Be concentrations in three fragments yield a terrestrial age of 4.4 ± 0.7 kyr, whereas two fragments show evidence for a recent change in shielding, most likely due to a recent impact on the NWA meteoroid, approximately 105 yr ago, that excavated material up to approximately 80 cm deep and exposed previously shielded material to higher cosmic‐ray fluxes. This scenario is supported by the low cosmogenic 3He/21Ne ratios in these two samples, indicating recent loss of cosmogenic 3He. Most NWA samples, except for clasts of petrologic type 4–6, contain significant amounts of solar Ne and Ar, but are virtually free of solar helium, judging from the trapped 4He/20Ne ratio of approximately 7. Trapped planetary‐type Kr and Xe are most clearly present in the bulk and matrix samples, where abundances of 129Xe from decay of now extinct 129I are highest. Cosmogenic 21Ne varies between 0.55 and 1.92 × 10?8 cm3 STP g?1, with no apparent relationship between cosmogenic and solar Ne contents. Low cosmogenic (22Ne/21Ne)c ratios in solar gas free specimens are consistent with irradiation in a large body. Combined 10Be and 21Ne concentrations indicate that NWA 869 had a 4π cosmic‐ray exposure (CRE) age of 5 ± 1 Myr, whereas elevated 21Ne concentrations in several clasts and bulk samples indicate a previous CRE of 10–30 Myr on the parent body, most probably as individual components in a regolith. Unlike many other large chondrites, NWA 869 does not show clear evidence of CRE as a large boulder near the surface of its parent body. Radiogenic 4He concentrations in most NWA 869 samples indicate a major outgassing event approximately 2.8 Gyr ago that may have also resulted in loss of solar helium.  相似文献   
22.
A series of higher thiadiamondoids and diamondoidthiols, including thiatetramantanes, tetramantanethiols, thiapentamantanes, pentamantanethiols, thiahexamantanes, hexamantanethiols and thiacylcohexamantane, was discovered in a gas condensate produced from a very deep (6274 m, 20,585 ft) petroleum reservoir in the Bon Secour Bay in the Mobile Bay gas field, located offshore Alabama in the northern Gulf of Mexico, USA. This appears to be the first reported natural occurrence of these compounds. Several isomers of higher thiadiamondoids and diamondoidthiols were identified using full scan gas chromatography-mass spectrometry (GC-MS) coupled with GC-sulfur chemiluminescence detection (GC-SCD) and GC × GC-time of flight mass spectrometry (GC × GC-TOFMS). These higher thiadiamondoids and diamondoidthiols are associated with abundant lower homologs including thiaadamantanes, thiadiamantanes, thiatriamantanes and their thiol groups. The origin of these compounds in petroleum has not been reported. It is speculated that similar to lower thiadiamondoids and diamondoidthiols, higher ones are possibly formed from the sulfurization of their precursor diamondoids during TSR, a conclusion supported by the occurrence of open-cage higher diamondoidthiols and sulfur isotopic data of higher thiadiamondoids and diamondoidthiols isolated from the Mobile Bay condensate. The presence of higher thiadiamondoids and diamondoidthiols is indicative of the occurrence of TSR and can be used to predict sour gas production.  相似文献   
23.
The distribution and composition of neutral carbohydrates in the solid phase and porewater, and their role in carbon cycling were investigated in contrasting marine sediments of the Baltic-North Sea region. Depth-invariant profiles of particulate carbohydrates (PCHO) and low PCHO yields (PCHO/organic carbon) indicated that a small inert carbohydrate fraction deposits on the sediment at the deeper stations in the northern Kattegat and Skagerrak compared to the shallower stations further South. This was supported by long-term sediment incubations, in which the PCHO concentrations remained unchanged during 480 days, revealing that neutral carbohydrates play a minor role in carbon mineralization at the deeper sites. In contrast, the reactivity of PCHO was high (first-order rate constant of 3.2 yr−1) at one shallow site in the Belt Sea. Monosaccharide spectra were uniform with sediment depth and between sites with the exception of the shallowest site in the middle of Kattegat, where glucose dominated the polymers at the surface. This was likely due to benthic diatoms. Addition of fresh algae to surface sediment from the deeper sites resulted in a preferential mineralization of particulate glucose polymers. The addition of algae also resulted in an initial pulse of glucose in the porewater pools of total hydrolyzable carbohydrates (THCHO), indicating a faster hydrolysis of glucose polymers in the particulate phase than the subsequent hydrolysis and bacterial consumption of oligo- and polymers of glucose in the porewater. This study shows that some carbohydrates such as glucose polymers are selectively utilized by heterotrophic bacteria during the settling of organic particles through the water column, and a relatively inert fraction arrives to the sediments where much of it escapes mineralization and becomes permanently buried. In shallow coastal environments, where the degradation in the water column is less extensive and where benthic algae may represent a local carbohydrate source, neutral carbohydrates appear to be more important in organic matter mineralization.  相似文献   
24.
Transport of ammonium (NH4 +), nitrate + nitrite (NO3 ?), total Kjeldahl nitrogen (TKN), soluble reactive phosphate (SRP), and total suspended solids (TSS) was measured in a freshwater tidal bayou located in a marsh system near the mouth of the Atchafalaya River in Louisiana. Sampling was conducted six times over one year and was timed to assess effects of seasonal variation in river flow and mean sea level of the Gulf of Mexico on material fluxes. Net fluxes of all materials were large and ebb directed in all seasons except fall, when net transport was 2 to 3 orders-of-magnitude smaller than in any other season. These results demonstrate that riverine forcing was the primary influence on materials transport in all seasons except fall when tidal forcing was most important. The range of net fluxes (g s?1) for each nutrient was as follows (a negative sign indicates a net export toward the Gulf): NO3 ?, ?0.006 to ?6.69; TKN, 0.09 to ?10.41; NH4 +, ?0.02 to ?1.36; SRP, ?0.001 to ?0.53; TSS, ?2 to ?81. Analysis of nutrient concentrations indicated the marsh/aquatic system removed NO3 ?, SRP, and TSS from the water column from late spring through early fall and released NH4 + and TKN in summer. The results of this study show that net materials export per unit cross section channel area increased as riverine influence increased.  相似文献   
25.
26.
The combination of the O-shell theory of Heymann and Dziczkaniec and the supernova theory of Woosley and Howard clearly identifies the astrophysical sites for the formation of the anomalous light Xe component in carbonaceous chondrites. These sites are the O- and Ne-shells, and possibly C-shell of a massive star. Most of the 124Xe and 126Xe are formed in the O-shell during hydrostatic core silicon-burning, when a seed of heavy nuclei is exposed to an effective temperature near T9 = 2.0. 128Xe is formed via 128Ba in the O-shell, but the amounts appear too small to satisfy the deduced 128Xe/124Xe and 128Xe/126Xe yield ratios from the chondrites. However, substantial amounts of 128Xe can be formed in the adjacent Ne- and C-shells during the explosion. The formation of 128Ba in the O-shell would increase if the (γ, α) photodisintegration rate in 128Ba is actually smaller than calculated by Woosley and Howard. Lewis et al. have proposed that the anomalous light Xe component is mass-fractionated normal Xe. It is in this sense that the process of stellar nucleosynthesis of the present paper mimicks mass-fractionation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号