首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   587篇
  免费   31篇
  国内免费   3篇
测绘学   58篇
大气科学   47篇
地球物理   165篇
地质学   180篇
海洋学   34篇
天文学   90篇
综合类   3篇
自然地理   44篇
  2023年   3篇
  2022年   7篇
  2021年   18篇
  2020年   9篇
  2019年   14篇
  2018年   27篇
  2017年   24篇
  2016年   22篇
  2015年   25篇
  2014年   25篇
  2013年   34篇
  2012年   20篇
  2011年   27篇
  2010年   22篇
  2009年   35篇
  2008年   25篇
  2007年   28篇
  2006年   31篇
  2005年   18篇
  2004年   19篇
  2003年   8篇
  2002年   20篇
  2001年   11篇
  2000年   5篇
  1999年   7篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   8篇
  1993年   4篇
  1992年   3篇
  1990年   5篇
  1989年   5篇
  1986年   7篇
  1984年   5篇
  1982年   4篇
  1981年   4篇
  1980年   6篇
  1979年   3篇
  1978年   7篇
  1976年   4篇
  1975年   9篇
  1974年   3篇
  1972年   4篇
  1971年   5篇
  1967年   4篇
  1963年   4篇
  1962年   3篇
  1957年   2篇
排序方式: 共有621条查询结果,搜索用时 203 毫秒
101.
Environmental magnetic techniques provide significant potential for characterizing sediments and soils and inferring their sources. This article discusses the application of environmental magnetic techniques in the study of an evolving landscape in the Shangqiu area, China, an archaeologically important region for investigating the origin of Shang civilization. Two magnetic parameters—anhysteretic remanent magnetization (ARM) and low-field magnetic susceptibility (χ)—are employed to discriminate the pre-Neolithic paleosol from the historic alluvium. In order to quantitatively interpret magnetic measurements, ARM versus χ plots are utilized with rigorous statistical analyses including group comparison and discriminant classification. With the ARM/χ classification model defined by the pre-Neolithic paleosol and historic alluvium, the sediment sources of three anthropogenic deposits (A-1, A-2, and A-3 from oldest to youngest) are addressed. Magnetic data clearly show that A-1 and A-3 are closely associated with the pre-Neolithic paleosol and historic alluvium, respectively. Cultural mixing processes might be partially responsible for the formation of A-2. © 1998 John Wiley & Sons, Inc.  相似文献   
102.
High mountainous areas are geomorphologically active environments which are strongly shaped by redistribution of sediments and soils. With the projected climate warming in the twenty-first century and the continued retreat of glaciers, the area of newly exposed, highly erodible sediments and soils will increase. This presents a need to better understand and quantify erosion processes in young mountainous soils, as an increase in erodibility could threaten human infrastructure (i.e. hydroelectric power, tourist installations and settlements). While soil development is increasingly well understood and quantified, a coupling to soil erosion rates is still missing. The aim of this study was, therefore, to assess how soil erosion rates change with surface age. We investigated two moraine chronosequences in the Swiss Alps: one in the siliceous periglacial area of Steingletscher (Sustenpass), with soils ranging from 30 a to 10 ka, and the other in the calcareous periglacial area of Griessgletscher (Klausenpass) with surfaces ranging from age of 110 a to 13.5 ka. We quantified the erosion rates using the 239+240Pu fallout radionuclides and compared them to physical and chemical soil properties and the vegetation coverage. We found no significant differences between the two parent materials. At both chronosequences, the erosion rates were highest in the young soils (on average 5−10 t ha-1 a-1 soil loss). Erosion rates decreased markedly after 3−5 ka of soil development (on average 1−2.5 t ha-1 a-1 soil loss) to reach a more or less stable situation after 10−14 ka (on average 0.3–2 t ha-1 a-1). Climate change not only causes glacier retreat, but also increased sediment dynamics. Depending on the relief and vegetational development, it takes up to at least 10 ka to reach soil stability. The establishment of a closed vegetation cover with dense root networks seems to be the controlling factor in the reduction of soil erodibility. © 2020 John Wiley & Sons, Ltd.  相似文献   
103.
In 1989, the need for reliable gridded land surface precipitation data sets, in view of the large uncertainties in the assessment of the global energy and water cycle, has led to the establishment of the Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst on invitation of the WMO. The GPCC has calculated a precipitation climatology for the global land areas for the target period 1951–2000 by objective analysis of climatological normals of about 67,200 rain gauge stations from its data base. GPCC's new precipitation climatology is compared to several other station-based precipitation climatologies as well as to precipitation climatologies derived from the GPCP V2.2 data set and from ECMWF's model reanalyses ERA-40 and ERA-Interim. Finally, how GPCC's best estimate for terrestrial mean precipitation derived from the precipitation climatology of 786 mm per year (equivalent to a water transport of 117,000 km3) is fitting into the global water cycle context is discussed.  相似文献   
104.
This ethnoarchaeological study at the Q'eqchi' Maya village of Las Pozas, Guatemala, aimed to refine the understanding of the relationship between soil chemical signatures and human activities for archaeological applications. The research involved phosphorus, exchangeable ion (calcium, potassium, magnesium, sodium), and trace element analysis of soils and earth floors extracted by Mehlich II, ammonium acetate, and DTPA chelate solutions, respectively. The results showed high levels of phosphorus, potassium, magnesium, and pH in food preparation areas, as well as high phosphorus concentrations and low pH in food consumption areas. The traffic areas exhibited low phosphorus and trace element contents, whereas refuse disposal areas were enriched. These results provide important information for the understanding of space use in ancient settlements. © 2002 Wiley Periodicals, Inc.  相似文献   
105.
High and variable levels of salinity were investigated in an intermittent stream in a high-rainfall area (~800 mm/year) of the Mt. Lofty Ranges of South Australia. The groundwater system was found to have a local, upslope saline lens, referred to here as a groundwater salinity ‘hotspot’. Environmental tracer analyses (δ18O, δ2H, 87/86Sr, and major elements) of water from the intermittent stream, a nearby permanent stream, shallow and deep groundwater, and soil-water/runoff demonstrate seasonal groundwater input of very saline composition into the intermittent stream. This input results in large salinity increases of the stream water because the winter wet-season stream flow decreases during spring in this Mediterranean climate. Furthermore, strontium and water isotope analyses demonstrate: (1) the upslope-saline-groundwater zone (hotspot) mixes with the dominant groundwater system, (2) the intermittent-stream water is a mixture of soil-water/runoff and the upslope saline groundwater, and (3) the upslope-saline-groundwater zone results from the flushing of unsaturated-zone salts from the thick clayey regolith and soil which overlie the metamorphosed shale bedrock. The preferred theory on the origin of the upslope-saline-groundwater hotspot is land clearing of native deep-rooted woodland, followed by flushing of accumulated salts from the unsaturated zone due to increased recharge. This cause of elevated groundwater and surface-water salinity, if correct, could be widespread in Mt. Lofty Ranges areas, as well as other climatically and geologically similar areas with comparable hydrogeologic conditions.  相似文献   
106.
The identification of potential recharge areas and estimation of recharge rates to the confined semi-fossil Ohangwena II Aquifer (KOH-2) is crucial for its future sustainable use. The KOH-2 is located within the endorheic transboundary Cuvelai-Etosha-Basin (CEB), shared by Angola and Namibia. The main objective was the development of a strategy to tackle the problem of data scarcity, which is a well-known problem in semi-arid regions. In a first step, conceptual geological cross sections were created to illustrate the possible geological setting of the system. Furthermore, groundwater travel times were estimated by simple hydraulic calculations. A two-dimensional numerical groundwater model was set up to analyze flow patterns and potential recharge zones. The model was optimized against local observations of hydraulic heads and groundwater age. The sensitivity of the model against different boundary conditions and internal structures was tested. Parameter uncertainty and recharge rates were estimated. Results indicate that groundwater recharge to the KOH-2 mainly occurs from the Angolan Highlands in the northeastern part of the CEB. The sensitivity of the groundwater model to different internal structures is relatively small in comparison to changing boundary conditions in the form of influent or effluent streams. Uncertainty analysis underlined previous results, indicating groundwater recharge originating from the Angolan Highlands. The estimated recharge rates are less than 1% of mean yearly precipitation, which are reasonable for semi-arid regions.  相似文献   
107.
Jens Teiser  Markus Küpper 《Icarus》2011,215(2):596-598
We have examined the influence of impact angle in collisions between small dust aggregates and larger dust targets through laboratory experiments. Targets consisted of μm-sized quartz dust and had a porosity of about 67%; the projectiles, between 1 and 5 mm in diameter, were slightly more compact (64% porosity). The collision velocity was centered at 20 m/s and impact angles range from 0° to 45°. At a given impact angle, the target gained mass for projectiles smaller than a threshold size, which decreases with increasing angle from about 3 mm to 1 mm. The fact that growth is possible up to the largest angles studied supports the idea of planetesimal formation by sweep-up of small dust aggregates.  相似文献   
108.
109.
Wang et al. (Contrib Mineral Petrol 171:62, 2016a) present data on composition of xenolith from Southern Tibet and conclude that ulrapotassic melts from the region formed by melting mantle, and complex interaction with a crustal component. In this discussion we demonstrate that numerous observations presented by Wang et al. (2016a) can be explained by partial melting of crust followed by interaction between that melt and the mantle. We show that this model can explain the variability of magmas in such suits without evoking occurrence of coincidental, unrelated events. Moreover we demonstrate that our model of a crustal origin of the proto-shoshonite melts is now supported by independent lines of evidence such as geochemistry of restites after high- and ultrahigh- pressure melting and melt inclusion studies.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号