首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2952篇
  免费   119篇
  国内免费   32篇
测绘学   68篇
大气科学   227篇
地球物理   730篇
地质学   985篇
海洋学   265篇
天文学   442篇
综合类   14篇
自然地理   372篇
  2024年   5篇
  2023年   6篇
  2022年   8篇
  2021年   54篇
  2020年   47篇
  2019年   55篇
  2018年   64篇
  2017年   66篇
  2016年   89篇
  2015年   90篇
  2014年   92篇
  2013年   179篇
  2012年   139篇
  2011年   185篇
  2010年   141篇
  2009年   167篇
  2008年   155篇
  2007年   161篇
  2006年   142篇
  2005年   125篇
  2004年   124篇
  2003年   109篇
  2002年   99篇
  2001年   71篇
  2000年   64篇
  1999年   59篇
  1998年   54篇
  1997年   37篇
  1996年   43篇
  1995年   29篇
  1994年   34篇
  1993年   32篇
  1992年   28篇
  1991年   26篇
  1990年   24篇
  1989年   23篇
  1988年   25篇
  1987年   29篇
  1986年   24篇
  1985年   31篇
  1984年   30篇
  1983年   21篇
  1982年   26篇
  1981年   23篇
  1980年   18篇
  1979年   15篇
  1978年   7篇
  1977年   7篇
  1974年   4篇
  1971年   3篇
排序方式: 共有3103条查询结果,搜索用时 15 毫秒
101.
Quantifying the potential ash fall hazards from re-awakening volcanoes is a topic of great interest. While methods for calculating the probability of eruptions, and for numerical simulation of tephra dispersal and fallout exist, event records at most volcanoes that re-awaken sporadically on decadal to millennial cycles are inadequate to develop rigorous forecasts of occurrence, much less eruptive volume. Here we demonstrate a method by which eruption records from radiocarbon-dated sediment cores can be used to derive forecasting models for ash fall impacts on electrical infrastructure. Our method is illustrated by an example from the Taranaki region of New Zealand. Radiocarbon dates, expressed as years before present (B.P.), are used to define an age-depth model, classifying eruption ages (with associated errors) for a circa 1500–10 500 year B.P. record at Mt. Taranaki (New Zealand). In addition, data describing the youngest 1500 years of eruption activity is obtained from directly dated proximal deposits. Absence of trend and apparent independence in eruption intervals is consistent with a renewal model using a mix of Weibulls distributions, which was used to generate probabilistic forecasts of eruption recurrence. After establishing that interval length and tephra thickness were independent in the record, a thickness–volume relationship (from [Rhoades, D.A., Dowrick, D.J., Wilson, C.J.N., 2002. Volcanic hazard in New Zealand: Scaling and attenuation relations for tephra fall deposits from Taupo volcano. Nat. Hazards, 26:147–174]) was inverted to provide a frequency–volume relationship for eruptions. Monte Carlo simulation of the thickness–volume relationship was then used to produce probable ash fall thicknesses at any chosen site. Several critical electrical infrastructure sites in the Taranaki Region were analysed. This region, being the only gas and condensate-producing area in New Zealand, is of national economic importance, with activities in and around the area depending on uninterrupted power supplies. Forecasts of critical ash thicknesses (1 mm wet and 2 mm dry) that may cause short-circuiting, surges or power shutdowns in substations show that the annual probabilities of serious impact are between ~ 0.5% and 27% over a 50 year period. It was also found that while large eruptions with high ash plumes tend to affect “expected” areas in relation to prevailing winds, the direction impacts of small ash falls are far less predictable. In the Taranaki case study, areas out of normal downwind directions, but close to the volcano, have probabilities of impact for critical thicknesses of 1–2 mm of around half to 60% of those in downwind directions and therefore should not be overlooked in hazard analysis. Through this method we are able to definitively show that the potential ash fall hazard to electrical infrastructure in this area is low in comparison to other natural threats, and provide a quantitative measure for use in risk analysis and budget prioritisation for hazard mitigation measures.  相似文献   
102.
Shear-wave splitting has been identified in many three-component seismograms from two separate field experiments on a section of the North Anatolian Fault in North-West Turkey. These observations are consistent with shear-wave propagation through a zone of extensive-dilitancy anisotropy. A preliminary attempt has been made to confirm this interpretation by simultaneously inverting suites of arrival-times for hypocentral locations and for parameters describing an anisotropic halfspace. Although the inversion procedure is not globally convergent, it is possible to recognize the true solution by systematically varying the initial conditions. Applied to selected data sets, the inversion defines several anisotropic models that fit the data significantly better than a simple isotropic model, and display the anisotropy required by the shear-wave splitting. However, most of these anisotropic models are not superior when they are used to individually locate events in a much larger data set. However, for each experiment, there is a single model that produces clearly superior locations for the larger data sets than those of other anisotropic or simple isotropic models. Both models display similar velocity variations which are characteristic of propagation through distributions of biplanar cracks displaying orthorhombic symmetry. The principal axes of the two models are oriented in similar directions and are within 20° of the principal axis of regional stress derived from fault-plane solutions. The solutions indicate low velocities close to the tensional axis, as would be expected in extensive-dilatancy anisotropy.  相似文献   
103.
Geochemical Indicators of Intrinsic Bioremediation   总被引:19,自引:0,他引:19  
A detailed field investigation has been completed at a gasoline-contaminated aquifer near Rocky Point, NC, to examine possible indicators of intrinsic bioremediation and identify factors that may significantly influence the rate and extent of bioremediation. The dissolved plume of benzene, toluene, ethylbenzene, and xylene (BTEX) in ground water is naturally degrading. Toluene and o-xylene are most rapidly degraded followed by m-, p-xylene, and benzene. Ethylbenzene appears to degrade very slowly under anaerobic conditions present in the center of the plume. The rate and extent of biodegradation appears to be strongly influenced by the type and quantity of electron acceptors present in the aquifer. At the upgradient edge of the plume, nitrate, ferric iron, and oxygen are used as terminal electron acceptors during hydrocarbon biodegradation. The equivalent of 40 to 50 mg/I of hydrocarbon is degraded based on the increase in dissolved CO2 relative to background ground water. Immediately downgradient of the source area, sulfate and iron are the dominant electron acceptors. Toluene and o-xylene are rapidly removed in this region. Once the available oxygen, nitrate, and sulfate are consumed, biodegradation is limited and appears to be controlled by mixing and aerobic biodegradation at the plume fringes.  相似文献   
104.
A new method is introduced for the identification of modal quantities of self-adjoint distributed-parameter systems. The method uses the temporal and spatial orthogonality properties of distributed-parameter systems to form a pseudo-Rayleigh quotient. The stationary values of the pseudo-Rayleigh quotient can be determined by the solution of an eigenvalue problem, where the eigenvalues and eigenfunctions provide the frequencies and natural modes of the distributed-parameter system. By way of formulation, the method is insensitive to zero mean measurement noise and is applicable to continuous as well as discrete systems. Numerical examples are presented in which the modal quantities of a simply-supported beam and a discrete model of a membrane are identified. The results are compared with another modal identification technique, namely, the Ibrahim time domain method.  相似文献   
105.
106.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
107.
Data reported in 40Ar/39Ar geochronology studies are commonly insufficient to allow computation of ages. This deficiency renders it difficult to compare ages based on different standards or constants, and often hinders critical evaluation of the results. Herein are presented an enumeration of the data that should be reported in all 40Ar/39Ar studies, including a discussion in support of these requirements. The minimum required data are identified and distinguished from parameters that are useful but may be derived from them by calculation. Finally, recommendations are made for metadata needed to document age calculations (e.g., from age spectrum or isochron analyses).  相似文献   
108.
109.
An impact drive point method is described for emplacing piezometers in a cobble river bottom where this has previously been difficult without the use of drilling rigs. To force the drive point piezometers through coble, the vibrational impact of an air-powered hammer was carried directly to the drive point by the use of an internal drive rod. After insertion to depth, the drive rod was removed from the lower portion of the piezometer and a standpipe was added to extend the piezometer above the river level. Piezometers installed in this way have permitted water quality analysis and dynamic measurement of vertical potentials in cobble sediments ranging in size from 2.5 to >30 cm and the method has been successfully used in the Columbia River, USA, and Töss River, Switzerland. This innovative method provides information on the hydrodynamics of pore water in highly permeable, cobble deposits that are common in high-energy river and lake bottoms. Piezometers installed using the internal drive rod method facilitate the assessment of the temporal and spatial dynamics of recharge and discharge at the ground water/surface water interface and analyses of the ecological connectivity between the hyporheic zone and surface water of rivers and streams. This information will lead to improved management decisions related to our nation's ground water and surface water supplies.  相似文献   
110.
A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/m2 is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/m2. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号