首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   9篇
  国内免费   2篇
大气科学   13篇
地球物理   55篇
地质学   37篇
海洋学   63篇
天文学   21篇
综合类   4篇
自然地理   6篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   5篇
  2016年   8篇
  2015年   8篇
  2014年   14篇
  2013年   13篇
  2012年   10篇
  2011年   12篇
  2010年   10篇
  2009年   15篇
  2008年   11篇
  2007年   8篇
  2006年   2篇
  2005年   2篇
  2004年   10篇
  2003年   7篇
  2002年   5篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1992年   4篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   5篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有199条查询结果,搜索用时 31 毫秒
71.
Permanent ground displacement as induced by seismic liquefaction was measured in the area which was recently hit by an earthquake. The measurement was carried out by comparing two aerophotographs of the area which were taken before and after the tremor. Using the measured data an empirical equation was derived which can calculate the magnitude of the displacement briefly. Furthermore, a finite-element technique was developed in order to predict the magnitude and the direction of the displacement in more precise manners.  相似文献   
72.
This study focuses on metapelites of the Polinik complex in the Kreuzeck Mts. southeast of the Tauern Window, Eastern Alps, where kyanite — staurolite — garnet gneisses host eclogites and high pressure (HP) amphibolites of the Austroalpine basement. The stable mineral assemblage is garnet — staurolite — biotite — kyanite — quartz. Estimated metamorphic conditions from conventional geothermobarometry are 654±30 °C and 0.9±0.08 GPa, and Average P-T values calculated by THERMOCALC, are 665±15 °C at 0.77±0.09 GPa. Formation of the present mineral association in gneisses is related to the exhumation (D2) stage of hosted eclogites/HP amphibolites within a lateral strike-slip zone.  相似文献   
73.
During the early part of a seismic swarm preceding eruption and caldera formation at Miyakejima Volcano, discoloured sea surfaces were observed 1.5 km off the western coast of Miyakejima on 27 June 2000. A later survey of the area using a multi-beam side scan sonar and a remotely operated small submarine revealed four craters of 20–30 m diameter aligned east-west in a 100×10–30 m area on the seafloor, with hot water at 140°C being released from one of the centres. Each crater consists of submarine spatter overlain in part by scoria lapilli. Dredged spatter from the craters was fresh, and there was no evidence of activity of marine organisms on the spatter surface, indicating that the discoloured sea surface resulted from magmatic eruption on the seafloor. This eruption occurred when a westward-propagating seismic swarm, initiated beneath Miyakejimas summit, passed through the area. Finding new magma on the seafloor demonstrates that this seismic swarm was associated with intruding magma, moving outward from beneath Miyakejima. Submarine spatter shows flattened shapes with a brittle crust formed by cooling in water, and its composition is aphyric andesite of 54 wt% SiO2. The spatter is similar in whole rock and mineral composition to spatter erupted in 1983. However, the wide range of Cl in melt inclusions in plagioclase of the 27 June submarine spatter shows that it is not simply a remnant of the 1983 magma, which has only high Cl melt inclusions in plagioclase. The mixed character of melt inclusions suggests involvement of a magma with low Cl melt inclusions. The magma erupted explosively on 18 August from Miyakejimas summit, considered as the second juvenile magma in this eruption, contains low Cl melt inclusions in plagioclase. Based on these observations and the eruption sequence, we present the following model: (1) A shallow magma chamber was filled with a remnant of 1983 magma that had evolved to a composition of 54–55 wt% SiO2. (2) Injection of the 18 August magma into this chamber generated a mixed magma having a wide range of Cl in melt inclusions contained plagioclase. The magma mixing might have occurred shortly before the submarine eruption and could have been a trigger for the initiation of the removal of magma from the chamber as an extensive dyke, which eventually led to caldera subsidence.Editorial responsibility: S Nakada, T Druitt  相似文献   
74.
We study the initiation and development of the limb coronal mass ejection (CME) of 15 May 2001, utilizing observations from Mauna Loa Solar Observatory (MLSO), the Solar and Heliospheric Observatory (SOHO), and Yohkoh. The pre-eruption images in various spectral channels show a quiescent prominence imbedded in the coronal void, being overlaid by the coronal arch. After the onset of rapid acceleration, this three-element structure preserved its integrity and appeared in the MLSO MK-IV coronagraph field of view as the three-part CME structure (the frontal rim, the cavity, and the prominence) and continued its motion through the field of view of the SOHO/LASCO coronagraphs up to 30 solar radii. Such observational coverage allows us to measure the relative kinematics of the three-part structure from the very beginning up to the late phases of the eruption. The leading edge and the prominence accelerated simultaneously: the rapid acceleration of the frontal rim and the prominence started at approximately the same time, the prominence perhaps being slightly delayed (4 – 6 min). The leading edge achieved the maximum acceleration amax 600 ± 150 m s–2 at a heliocentric distance 2.4 –2.5 solar radii, whereas the prominence reached amax 380± 50 m s–2, almost simultaneously with the leading edge. Such a distinct synchronization of different parts of the CME provides clear evidence that the entire magnetic arcade, including the prominence, erupts as an entity, showing a kind of self-similar expansion. The CME attained a maximum velocity of vmax 1200 km s–1 at approximately the same time as the peak of the associated soft X-ray flare. Beyond about 10 solar radii, the leading edge of the CME started to decelerate at a–20 m s–2, most likely due to the aerodynamic drag. The deceleration of the prominence was delayed for 10 –30 min, which is attributed to its larger inertia.  相似文献   
75.
76.
During November 2000–June 2002, both direct current measurements from deployment of a line of five moorings and repeated CTD observations were conducted along the Oyashio Intensive observation line off Cape Erimo (OICE). All the moorings were installed above the inshore-side slope of the Kuril-Kamchatka Trench. Before calculating the absolute volume transports, we compared vertical velocity differences of relative geostrophic velocities with those of the measured velocities. Since both the vertical velocity differences concerned with the middle three moorings were in good agreement, the flows above the continental slope are considered to be in thermal wind balance. We therefore used the current meter data of these three moorings, selected among all five moorings, to estimate the absolute volume transports of the Oyashio referred to the current meter data. As a result, we estimated that the southwestward absolute volume transports in 0–1000 db are 0.5–12.8 × 106 m3/sec and the largest transport is obtained in winter, January 2001. The Oyashio absolute transports in January 2001, crossing the OICE between 42°N and 41°15′ N from the surface to near the bottom above the continental slope, is estimated to be at least 31 × 106 m3/sec. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
77.
The fundamental nature of the mass flux due to the shear effect is examined analytically in a basin with steady and oscillatory currents to promote a better understanding of the mass transport process in coastal waters. The currents are given from solutions of the simplified motion equation so as to be consistent with the diffusion equation. The matter concentration used is given by an analytical solution of the diffusion equation with the settling flux term contained. Mass flux, yielding the depth-averaged dispersion coefficient, is rather varied vertically in both steady and oscillatory currents. In the oscillatory current with a Stokes layer in particular, the vertical profile of flux is more complicated and even negative flux is induced near the basin floor. This negative flux does not necessarily yield a negative value of the vertically averaged dispersion coefficient. The exact dispersion coefficient given by the flux analysis is realized only in the steady state of the matter concentration distribution, though we can scarcely observe the steady state in the actual sea. The vertically uniform longitudinal dispersion coefficient at the stationary stage is shown to be caused from the vertical complexity of mass flux by the action of the vertical diffusing and the settling flux. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
78.
The longitudinal dispersion effect due to the boundary layer formed by a tidal oscillatory current is examined theoretically. This analysis reveals the process whereby the dispersion coefficient becomes steady after the release of the diffusing substance. Though the dispersion due to an oscillatory current has so far been investigated mostly in the case of a linear velocity profile, the following result was found by taking account of the boundary layer in the oscillatory current. The depth-averaged dispersion coefficient for the case of a current having a boundary layer can be a few times larger than in the case of a linear velocity profile when the characteristic mixing time is long; the phase lead in the boundary layer induces nearly 20 percent of the longitudinal dispersion effect.  相似文献   
79.
80.
An observation line along the TOPEX/POSEIDON (T/P) ground track 060 was set to estimate the Oyashio transport. We call this line the OICE (Oyashio Intensive observation line off-Cape Erimo) along which we have been conducting repeated hydrographic observations and maintaining mooring systems. T/P derived sea surface height anomaly (SSHA) was compared with velocity and transport on OICE. Although the decorrelation scale of SSHA was estimated at about 80–110 km in the Oyashio region, the SSHA also contains horizontal, small-scale noise, which was eliminated using a Gaussian filter. In the comparison between the SSHA difference across two selected points and the subsurface velocity measured by a moored Acoustic Doppler Current Profiler (ADCP), the highest correlation (0.92) appeared when the smoothing scale was set at 30 km with the two points as near as possible. For the transport in the Oyashio region, the geostrophic transport between 39°30′ N and 42°N was compared with the SSHA difference across the same two points. In this case the highest correlations (0.79, 0.88 and 0.93) occurred when the smoothing scale was set at 38, 6 and 9 km for reference levels of 1000, 2000 and 3000 db, respectively. The annual mean transport was estimated as 9.46 Sv in the 3000 db reference case. The Oyashio transport time series was derived from the T/P SSHA data, and the transports are smaller than that estimated from the Sverdrup balance in 1994–1996 and larger than that in 1997–2000. This difference is consistent with baroclinic response to wind stress field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号