首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   10篇
  国内免费   1篇
测绘学   8篇
大气科学   18篇
地球物理   74篇
地质学   84篇
海洋学   9篇
天文学   100篇
自然地理   13篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   5篇
  2018年   8篇
  2017年   7篇
  2016年   11篇
  2015年   16篇
  2014年   6篇
  2013年   17篇
  2012年   8篇
  2011年   16篇
  2010年   14篇
  2009年   26篇
  2008年   12篇
  2007年   16篇
  2006年   17篇
  2005年   17篇
  2004年   10篇
  2003年   13篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   11篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
  1976年   1篇
  1973年   1篇
  1971年   2篇
  1960年   1篇
排序方式: 共有306条查询结果,搜索用时 0 毫秒
301.
Groundwater-dependent ecosystems represent globally rare edaphic islands of scattered distribution, often forming areas of regionally unique environmental conditions. A stable groundwater supply is a key parameter defining their ecological specificity, promoting also soil thermal buffering. Still, a limited number of studies dealt with the importance of water temperature in mire ecosystems and virtually no data exist on within-site variation in the temperature buffer effect. Three temperature dataloggers, placed in patches potentially differing in groundwater supply, were installed in each of 19 Western Carpathian spring mire sites from May 2019 to July 2020. Spring source plots statistically differed in water temperature parameters from the plots located towards the spring mire margin, which did not significantly differ from one another. At the majority of sites, the temperature values changed gradually from spring source to mire margins, fitting the pattern expected in the groundwater temperature buffering scenario. Dataloggers placed in the spring sources were the most distinctive from the others in thermal buffering parameters in conditional principal component analysis. The difference between the spring source and its margin was on average 3.25 °C for 95th percentile of the recorded water temperature data points (i.e. warm extremes) and 1.91 °C for 5th percentile (i.e. cold extremes). This suggests that if the temperature at spring source area is considered, thermal buffering within a site may mitigate mainly warm extremes. Thus, our data may provide an important baseline for predictions of possibly upcoming changes in spring mire hydrology caused by climate change. Both warming and precipitation decrease can give rise to the loss or substantial reduction of buffering effect if the contrasting parameters now recorded at the central part shift to those found towards the margins of groundwater-fed areas.  相似文献   
302.
This paper reports the results of CHIME (chemical Th–U–Pb isochron method) dating of detrital monazites from Carboniferous sandstones in the Upper Silesia Coal Basin (USCB). A total of 4739 spots on 863 monazite grains were analyzed from samples of sandstone derived from six stratigraphic units in the sedimentary sequence. Age distributions were identified in detrital monazites from the USCB sequence and correlated with specific dated domains in potential source areas. Most monazites in all samples yielded ca. 300–320 Ma (Variscan) ages; however, eo-Variscan, Caledonian and Cadomian ages were also obtained. The predominant ages are comparable to reported ages of certain tectonostratigraphic domains in the polyorogenic Bohemian Massif (BM), which suggests that various crystalline lithologies in the BM were the dominant sources of USCB sediments.  相似文献   
303.
Mineralogy and Petrology - Zirconolite is documented from the Evate apatite-magnetite-carbonate deposit in the circular Monapo Klippe (eastern Mozambique)—a relic of Neoproterozoic nappe...  相似文献   
304.
305.
Groundwater is the most important source of water supply in southern Tunisia. Previous hydrogeologic and isotopic studies carried out in this region revealed the existence of two major aquifer systems: the “Complex Terminal” (CT) and the “Continental Intercalaire” (CI). Turonian carbonates constitute one of the major aquifer levels of the CT multilayered aquifer. It extends over most of southern Tunisia, and its hydrodynamic regime is largely influenced by tectonics, lithology and recharge conditions. Forty-eight groundwater samples from the CI and Turonian aquifers were collected between January and April 2004 for chemical and isotopic analyses. Hydrochemistry and isotopic tools were combined to get an insight into the processes controlling chemical composition of groundwater and wide-scale interaction of these two aquifer systems. Analysis of the dissolved constituents revealed that several processes control the observed chemical composition: (i) incongruent dissolution of carbonate minerals, (ii) dissolution of evaporitic minerals, and (iii) cation exchange. Dissolution alone cannot account for the observed high supersaturation states of groundwater with respect to calcite and dolomite. The observed supersaturation is most probably linked to geogenic CO2 entering water-bearing horizons of the CT and CI aquifers via deep tectonic faults and discontinuities and subsequent degassing in the exploitation wells. Presence of geogenic CO2 in the investigated region was confirmed by C isotope data of the DIC reservoir. The radiocarbon content of the Turonian samples varied between 9.5 and 43 pmc. For CI samples generally lower values were recorded, between 3.8 and 22.5 pmc. Stable isotope composition of Turonian groundwater samples varied from −8.3 to −5.3‰ for δ18O and from −60 to −25‰ for δ2H. The corresponding ranges of δ values for the Continental Intercalaire samples were from −8.9‰ to −6.9‰ for δ18O and from −68.2‰ to −45.7‰ for δ2H. Stable isotope composition of groundwater representing CT and CI aquifers provide strong evidence for regional interaction between both systems.  相似文献   
306.
During the Last Glacial Maximum (LGM), long valley glaciers developed on the northern and southern sides of the High Tatra Mountains, Poland and Slovakia. Chlorine-36 exposure dating of moraine boulders suggests two major phases of moraine stabilization, at 26–21 ka (LGM I — maximum) and at 18 ka (LGM II). The dates suggest a significantly earlier maximum advance on the southern side of the range. Reconstructing the geometry of four glaciers in the Sucha Woda, Pańszczyca, Mlynicka and Velicka valleys allowed determining their equilibrium-line altitudes (ELAs) at 1460, 1460, 1650 and 1700 m asl, respectively. Based on a positive degree-day model, the mass balance and climatic parameter anomaly (temperature and precipitation) has been constrained for LGM I advance. Modeling results indicate slightly different conditions between northern and southern slopes. The N–S ELA gradient finds confirmation in slightly higher temperature (at least 1 °C) or lower precipitation (15%) on the south-facing glaciers during LGM I. The precipitation distribution over the High Tatra Mountains indicates potentially different LGM atmospheric circulation than at the present day, with reduced northwesterly inflow and increased southerly and westerly inflows of moist air masses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号