首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   20篇
  国内免费   1篇
测绘学   15篇
大气科学   49篇
地球物理   91篇
地质学   106篇
海洋学   31篇
天文学   308篇
综合类   3篇
自然地理   37篇
  2023年   3篇
  2022年   2篇
  2021年   11篇
  2020年   9篇
  2019年   15篇
  2018年   15篇
  2017年   17篇
  2016年   11篇
  2015年   18篇
  2014年   14篇
  2013年   13篇
  2012年   18篇
  2011年   17篇
  2010年   12篇
  2009年   40篇
  2008年   31篇
  2007年   28篇
  2006年   42篇
  2005年   39篇
  2004年   48篇
  2003年   36篇
  2002年   37篇
  2001年   29篇
  2000年   26篇
  1999年   21篇
  1998年   26篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1991年   2篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1978年   2篇
  1977年   2篇
  1976年   6篇
  1975年   3篇
  1974年   4篇
  1973年   5篇
  1972年   1篇
  1970年   3篇
  1967年   1篇
排序方式: 共有640条查询结果,搜索用时 15 毫秒
101.
We report the detection of extended X-ray emission around several powerful 3CR quasars with redshifts out to 0.73. The ROSAT HRI images of the quasars have been corrected for spacecraft wobble and compared with an empirical point-spread function. All the quasars examined show excess emission at radii of 15 arcsec and more, the evidence being strong for the more distant objects and weak only for the two nearest ones, which are known from other wavelengths not to lie in strongly clustered environments. The spatial profile of the extended component is consistent with thermal emission from the intracluster medium of moderately rich host clusters to the quasars. The total luminosities of the clusters are in the range ∼4×1044–3×1045 erg s−1, assuming a temperature of 4 keV. The inner regions of the intracluster medium are, in all cases, dense enough to be part of a cooling flow.  相似文献   
102.
The mass density of massive black holes observed locally is consistent with the hard X-ray background provided that most of the radiation produced during their growth was absorbed by surrounding gas. A simple model is proposed here for the formation of galaxy bulges and central black holes in which young spheroidal galaxies have a significant distributed component of cold dusty clouds, which accounts for the absorption. The central accreting black hole is assumed to emit both a quasar-like spectrum, which is absorbed by the surrounding gas, and a slow wind. The power in both is less than the Eddington limit for the black hole. The wind, however, exerts the most force on the gas and, as earlier suggested by Silk & Rees, when the black hole reaches a critical mass it is powerful enough to eject the cold gas from the galaxy, so terminating the growth of both black hole and galaxy. In the present model this point occurs when the Thomson depth in the surrounding gas has dropped to about unity and results in the mass of the black hole being proportional to the mass of the spheroid, with the normalization agreeing with that found for local galaxies by Magorrian et al. for reasonable wind parameters. The model predicts a new population of hard X-ray and submm sources at redshifts above 1, which are powered by black holes in their main growth phase.  相似文献   
103.
In this study, we use isochron‐burial dating to date the Swiss Deckenschotter, the oldest Quaternary deposits of the northern Alpine Foreland. Concentrations of cosmogenic 10Be and 26Al in individual clasts from a single stratigraphic horizon can be used to calculate an isochron‐burial age based on an assumed initial ratio and the measured 26Al/10Be ratio. We suggest that, owing to deep and repeated glacial erosion, the initial isochron ratio of glacial landscapes at the time of burial varies between 6.75 and 8.4. Analysis of 22 clasts of different lithology, shape, and size from one 0.5 m thick gravel bed at Siglistorf (Canton Aargau) indicates low nuclide concentrations: <20 000 10Be atoms/g and <150 000 26Al atoms/g. Using an 26Al/10Be ratio of 7.6 (arithmetical mean of 6.75 and 8.4), we calculate a mean isochron‐burial age of 1.5 ± 0.2 Ma. This age points to an average bedrock incision rate between 0.13 and 0.17 mm/a. Age data from the Irchel, Stadlerberg, and Siglistorf sites show that the Higher Swiss Deckenschotter was deposited between 2.5 and 1.3 Ma. Our results indicate that isochron‐burial dating can be successfully applied to glaciofluvial sediments despite very low cosmogenic nuclide concentrations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
104.
Soils in mountainous areas are often polygenetic, developed in slope covers that relate to glacial and periglacial activities of the Pleistocene and Holocene and reflect climatic variations. Landscape development during the Holocene may have been influenced by erosion/solifluction that often started after the Holocene climatic optimum. To trace back soil evolution and its timing, we applied a multi‐methodological approach. This approach helped us to outline scenario of soil transformation. According to our results, some aeolian input must have occurred in the late Pleistocene. During that time and the early Holocene, the soils most likely had features of Cryosols or Leptosols. Physico‐chemical and mineralogical analyses have indicated that the material was denudated (between late Boreal to the Atlantic) from the ridge and upper‐slope positions forming a colluvium at mid‐slope positions. Later, during the Sub‐Boreal, mass wasting of the remains of silt material deposited at the end of the Pleistocene age on the ridge top seems to have occurred. In addition, the cool and moist conditions caused the deposition of a colluvium at the lower‐slope positions. The next phase was characterized by the transformation of Leptosols/Cambisols into Podzols at upper‐slope or shoulder positions and to Albic Cambisols at mid‐slope positions. During the Sub‐Boreal period, Stagnosols started to form at the lower part of the slope catena. Overall, the highest erosion rates were calculated at the upper‐slope position and the lowest rates at mid‐slope sites. Berylium‐10 (10Be) data showed that the Bs, BC/C were covered during the Holocene by a colluvium with a different geological composition which complicated the calculation of erosion or accumulation rates. The interpretation of erosion and accumulation rates in such multi‐layered materials may, therefore, be hampered. However, the multi‐methodological reconstruction we applied shed light on the soil and landscape evolution of the eastern Karkonosze Mountains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
105.
Coastal boulder fields provide clues to long-term frequency-magnitude patterns of coastal flooding events and have the potential to play an important role in coastal hazard assessment. Mapping boulders in the field is time and labour-intensive, and work on intertidal reef platforms, as in the present study, is physically challenging. By addressing coastal scientists who are not specialists in remote sensing, this contribution reports on the possibilities and limitations of digital applications in boulder mapping in Eastern Samar, Philippines, where recent supertyphoons Haiyan and Hagupit induced high waves, coastal flooding and boulder transport. It is demonstrated how satellite imagery of sub-metre resolution (from Pléiades and WorldView-3 imagery) enables efficient analysis of transport vectors and distances of larger boulders, reflecting variation in latitudes of both typhoon tracks and approaching angles of typhoon-generated waves. During the investigated events, boulders with a-axes of up to 8 m were clearly identified to have been shifted for up to 32 m, mostly along the seaward margin of the boulder field. It is, however, hard to keep track of smaller boulders, and the length of a-axes and b-axes including their orientation is often impossible to map with sufficient accuracy. Orthophotographs and digital surface models created through the application of an unmanned aerial vehicle and the ‘Structure from Motion’ technique provide ultra-high-resolution data, and have the potential to not only improve the results of satellite image analysis, but also those from field mapping and may significantly reduce overall time in the field. Orthophotographs permit unequivocal mapping of a-axes and b-axes including their orientation, while precise values for c-axes can be derived from the respective digital surface models. Volume of boulders is best inferred from boulder-specific Structure from Motion-based three-dimensional models. Battery power, flight speed and altitude determine the limits of the area covered, while patches shielded by the boulders are difficult to resolve. For some tasks, field mapping remains mandatory and cannot be replaced by currently available remote sensing tools: for example, sampling for rock type, density and age dating, recording of lithological separation of boulders from the underlying geological unit and of geomorphic features on a millimetre to decimetre-scale, or documentation of fine-grained sediment transport in between the boulders in supratidal settings. In terms of future events, the digital products presented here will provide a valuable reference to track boulder transport on a centimetre to decimetre-scale and to better understand the hydrodynamics of extreme-wave events on a fringing reef coastline.  相似文献   
106.
Extreme erosion events can produce large short-term sediment fluxes. Such events complicate erosion rates estimated from cosmogenic nuclide concentrations in river sediment by providing sediment with a concentration different from the long-term basin average. We present a detrital 10Be study in southern Taiwan, with multiple samples obtained in a time sequence bracketing the 2009 Typhoon Morakot, to assess the impact of landslide sediment on 10Be concentrations (N10Be) in river sediment. Sediment samples were collected from 13 major basins, two or three times over the last decade, to observe the temporal variation of N10Be. Landslide inventories with time intervals of 5–6 years were used to quantify sediment flux changes. A negative correlation between N10Be and landslide areal density indicates dilution of N10Be by landslide sediment. Denudation rates estimated from the diluted N10Be can be up to three times higher than the lowest rate derived from the same basins. Observed increases imply that, 3 years after the passage of Typhoon Morakot, fluvial channels still contain a considerable amount of sediment provided by hillslope landslides during the event. However, higher N10Be in 2016 samples indicate that the contribution from landslide sediment at the sampled grain size has decreased with time. The correlation between changes in N10Be and landslide area and volume is not strong, likely resulting from the stochastic and complex nature of sediment transport. To simultaneously evaluate the volume of landslide-derived sediment and estimate the background denudation rate, associated with less impulsive sediment supply, we constructed a sediment-mixing model with the time series of N10Be and landslide inventories. The spatial pattern of background erosion rate in southern Taiwan is consistent with the regional tectonic framework, indicating that the landscape is evolving mainly in response to the tectonic forcing, and this signal is modified, but not obscured by impulsive sediment supply. © 2019 John Wiley & Sons, Ltd.  相似文献   
107.
Soil loss caused by erosion has enormous economic and social impacts. Splash effects of rainfall are an important driver of erosion processes; however, effects of vegetation on splash erosion are still not fully understood. Splash erosion processes under vegetation are investigated by means of throughfall kinetic energy (TKE). Previous studies on TKE utilized a heterogeneous set of plant and canopy parameters to assess vegetation's influence on erosion by rain splash but remained on individual plant- or plot-levels. In the present study we developed a method for the area-wide estimation of the influence of vegetation on TKE using remote sensing methods. In a literature review we identified key vegetation variables influencing splash erosion and developed a conceptual model to describe the interaction of vegetation and raindrops. Our model considers both amplifying and protecting effect of vegetation layers according to their height above the ground and aggregates them into a new indicator: the Vegetation Splash Factor (VSF). It is based on the proportional contribution of drips per layer, which can be calculated via the vegetation cover profile from airborne LiDAR datasets. In a case study, we calculated the VSF using a LiDAR dataset for La Campana National Park in central Chile. The studied catchment comprises a heterogeneous mosaic of vegetation layer combinations and types and is hence well suited to test the approach. We calculated a VSF map showing the relation between vegetation structure and its expected influence on TKE. Mean VSF was 1.42, indicating amplifying overall effect of vegetation on TKE that was present in 81% of the area. Values below 1 indicating a protective effect were calculated for 19% of the area. For future work, we recommend refining the weighting factor by calibration to local conditions using field-reference data and comparing the VSF with TKE field measurements. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
108.
The presence of geophysical receivers on the seafloor changes the local wave field due to the receiver seafloor interaction. The resulting PP- and PS-wave distortion of the wave field is often referred to as receiver coupling to the seafloor and can make data processing challenging and sometimes impossible. This paper provides an overview of the mathematical approaches to describe receiver coupling, how to estimate receiver coupling and what the difficulties and possible solutions are. The first section shows how the mathematical approach developed from a simple model considering only the vertical receiver component to include all three receiver components and their interactions with the seafloor. In the second section, I show how receiver coupling can be measured and how it can be improved using mathematical and data-driven approaches.  相似文献   
109.
Determining sediment transfer times is key to understanding source-to-sink dynamics and the transmission of environmental signals through the fluvial system. Previous work on the Bolivian Altiplano applied the in situ cosmogenic 14C-10Be-chronometer to river sands and proposed sediment storage times of ~10–20 kyr in four catchments southeast of Lake Titicaca. However, the fidelity of those results hinges upon isotopic steady-state within sediment supplied from the source area. With the aim of independently quantifying sediment storage times and testing the 14C-10Be steady-state assumption, we dated sediment storage units within one of the previously investigated catchments using radiocarbon dating, cosmogenic 10Be-26Al isochron burial dating, and 10Be-26Al depth-profile dating. Palaeosurfaces appear to preserve remnants of a former fluvial system, which has undergone drainage reversal, reduction in catchment area, and local isostatic uplift since ~2.8 Ma. From alluvium mantling the palaeosurfaces we gained a deposition age of ~580 ka, while lower down fluvial terraces yielded ≤34 ka, and floodplains ~3–1 ka. Owing to restricted channel connectivity with the terraces and palaeosurfaces, the main source of channel sediment is via reworking of the late Holocene floodplain. Yet modelling a set of feasible scenarios reveals that floodplain storage and burial depth are incompatible with the 14C-10Be disequilibrium measured in the channel. Instead we propose that the 14C-10Be offset results from: (i) non-uniform erosion whereby deep gullies supply hillslope-derived debris; and/or (ii) holocene landscape transience associated with climate or human impact. The reliability of the 14C-10Be chronometer vitally depends upon careful evaluation of sources of isotopic disequilibrium in a wide range of depositional and erosional landforms in the landscape. © 2018 John Wiley & Sons, Ltd.  相似文献   
110.
Relict rock glaciers are complex hydrogeological systems that might act as relevant groundwater storages; therefore, the discharge behavior of these alpine landforms needs to be better understood. Hydrogeological and geophysical investigations at a relict rock glacier in the Niedere Tauern Range (Austria) reveal a slow and fast flow component that appear to be related to the heterogeneous structure of the aquifer. A numerical groundwater flow model was used to indicate the influence of important internal structures such as layering, preferential flow paths and aquifer-base topography. Discharge dynamics can be reproduced reasonably by both introducing layers of strongly different hydraulic conductivities or by a network of highly conductive channels within a low-conductivity zone. Moreover, the topography of the aquifer base influences the discharge dynamics, which can be observed particularly in simply structured aquifers. Hydraulic conductivity differences of three orders of magnitude are required to account for the observed discharge behavior: a highly conductive layer and/or channel network controlling the fast and flashy spring responses to recharge events, as opposed to less conductive sediment accumulations sustaining the long-term base flow. The results show that the hydraulic behavior of this relict rock glacier and likely that of others can be adequately represented by two aquifer components. However, the attempt to characterize the two components by inverse modeling results in ambiguity of internal structures when solely discharge data are available.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号