首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2868篇
  免费   78篇
  国内免费   32篇
测绘学   79篇
大气科学   233篇
地球物理   669篇
地质学   1063篇
海洋学   249篇
天文学   480篇
综合类   17篇
自然地理   188篇
  2022年   14篇
  2021年   45篇
  2020年   39篇
  2019年   35篇
  2018年   84篇
  2017年   63篇
  2016年   93篇
  2015年   60篇
  2014年   91篇
  2013年   147篇
  2012年   108篇
  2011年   159篇
  2010年   115篇
  2009年   148篇
  2008年   139篇
  2007年   120篇
  2006年   109篇
  2005年   105篇
  2004年   69篇
  2003年   74篇
  2002年   90篇
  2001年   61篇
  2000年   70篇
  1999年   69篇
  1998年   46篇
  1997年   58篇
  1996年   52篇
  1995年   44篇
  1994年   34篇
  1993年   37篇
  1992年   20篇
  1991年   27篇
  1990年   26篇
  1989年   19篇
  1988年   19篇
  1987年   39篇
  1986年   23篇
  1985年   28篇
  1984年   33篇
  1983年   31篇
  1982年   38篇
  1981年   21篇
  1980年   33篇
  1979年   23篇
  1978年   22篇
  1977年   24篇
  1976年   22篇
  1975年   27篇
  1974年   20篇
  1973年   21篇
排序方式: 共有2978条查询结果,搜索用时 15 毫秒
61.
The Mössbauer fractions f for various ferrous- and/or ferric-containing oxides and oxyhydroxides, silicates and carbonates were evaluated from the experimental temperature dependence of their center shifts, using the Debye approximation for the second-order Doppler shift. It is concluded that ferrous ions exhibit a lower fraction as compared to ferric ions. Using standard mixtures of -Fe2O3 with selected Fe2+ or Fe3+ compounds, it is found that the calculated Fe3+ f values are somewhat overestimated with respect to those of Fe2+. Possible explanations for this shortcoming are discussed and it is suggested that a different temperature dependence of the intrinsic isomer shift is the most likely reason. This suggestion is corroborated by analyses of hematite and hedenbergite data which are available for temperatures up to 900 K and 800 K respectively.  相似文献   
62.
Ground-penetrating radar (GPR) is a geophysical technique widely used to study the shallow subsurface and identify various sediment features that reflect electromagnetic waves. However, little is known about the exact cause of GPR reflections because few studies have coupled wave theory to petrophysical data. In this study, a 100- and 200-MHz GPR survey was conducted on aeolian deposits in a quarry. Time-domain reflectometry (TDR) was used to obtain detailed information on the product of relative permittivity (ɛr) and relative magnetic permeability (μr), which mainly controls the GPR contrast parameter in the subsurface. Combining TDR data and lacquer peels from the quarry wall allowed the identification of various relationships between sediment characteristics and ɛrμr. Synthetic radar traces, constructed using the TDR logs and sedimentological data from the lacquer peels, were compared with the actual GPR sections. Numerous peaks in ɛrμr, which are superimposed on a baseline value of 4 for dry sand, are caused by potential GPR reflectors. These increases in ɛrμr coincide with the presence of either organic material, having a higher water content and relative permittivity than the surrounding sediment, or iron oxide bands, enhancing relative magnetic permeability and causing water to stagnate on top of them. Sedimentary structures, as reflected in textural change, only result in possible GPR reflections when the volumetric water content exceeds 0·055. The synthetic radar traces provide an improved insight into the behaviour of radar waves and show that GPR results may be ambiguous because of multiples and interference.  相似文献   
63.
In the framework of the Sismovalp European project, an equivalent linear 2D code was developed to compute the response of a valley to SH waves, using the discrete wave-number method proposed by Aki and Larner (Aki K, Larner KL (1970) J Geophys Res 75:5). To overcome the frequency upper bound limitation, the Aki and Larner’s method is combined with a one-dimensional computation using a classical multi-layer method (Aki K, Richards PG (1980) Quantitative Seismology: Theory and Methods, vols. 1 & 2. W.H. Freeman & Co, San Francisco). The so-called “Aki–Larner extended method” is associated to an iterative algorithm, as proposed by Seed and Idriss (Seed HB, Idriss IM (1969) Report No. EERC 70–10, Earthquake Research Center, University of California, Berkeley, California) which accounts for the modulus and damping degradation using a linear visco-elastic model. A comparison of the results in the linear and the equivalent linear cases, for a magnitude 6.0 earthquake, shows that the account for the equivalent linear behaviour of the soil significantly reduces the amplification level, especially at frequencies higher than the fundamental resonance frequency of the site. In the case of site effects or microzonation studies devoted to produce design spectra for engineering structures, this can have a major impact on the associated results and costs, depending on the frequency of interest for the considered structure. As a first application of the developed technique, 2D equivalent linear Aki–Larner computations are used to perform the seismic microzonation study of the upper Rhone valley, in the Visp area (Switzerland), a typical 2D alpine valley. These investigations made it possible to determine site specific spectra, associated with different zones, to be used instead of the code spectra that do not take into account the local 2D amplification.  相似文献   
64.
65.
66.
Summary The morphology of the Wadati-Benioff zone in the region of Central America, based on the distribution of 1377 earthquake foci, verified the existence of an intermediate aseismic gap and its relation to active andesitic volcanism, and the non-uniformity of subduction due to the hampering effect of the main structural features of the subducting Cocos plate. Four deep seismically active fracture zones, genetically connected with the process of subduction, and three fracture zones manifesting the possible boundary between the Americas and Caribbean plates were identified in the continental wedge.  相似文献   
67.
68.
High-elevation mountains often constitute for basins important groundwater recharge sources through mountain-front recharge processes. These processes include streamflow losses and subsurface inflow from the mountain block. However, another key recharge process is from irrigation practices, where mountain streamflow is distributed across the irrigated piedmont. In this study, coupled groundwater fluctuation measurements and environmental tracers (18O, 2H, and major ions) were used to identify and compare the natural mountain-front recharge to the anthropogenically induced irrigation recharge. Within the High Atlas mountain front of the Ourika Basin, Central Morocco, the groundwater fluctuation mapping from the dry to wet season showed that recharge beneath the irrigated area was higher than the recharge along the streambed. Irrigation practices in the region divert more than 65% of the stream water, thereby reducing the potential for in-stream groundwater recharge. In addition, the irrigation areas close to the mountain front had greater water table increases (up to 3.5 m) compared with the downstream irrigation areas (<1 m increase). Upstream crops have priority to irrigation with stream water over downstream areas. The latter are only irrigated via stream water during large flood events and are otherwise supplemented by groundwater resources. These changes in water resources used for irrigation practices between upstream and downstream areas are reflected in the spatiotemporal evolution of the stable isotopes of groundwater. In the upstream irrigation area, the groundwater stable isotope values (δ18O: −8.4‰ to −7.4‰) reflect recharge by the diverted stream water. In the downstream irrigation area, the groundwater isotope values are lower (δ18O: −8.1‰ to −8.4‰) due to recharge via the flood water. In the nonirrigation area, the groundwater has the highest stable isotope values (δ18O: −6.8‰ to −4.8‰). This might be due to recharge via subsurface inflow from the mountain block to the mountain front and/or recharge via local low altitude rainfall. These findings highlight that irrigation practices can result in the dominant mountain-front recharge process for groundwater.  相似文献   
69.
Summary The linearization approach is used to compute the travel times in inhomogeneous slightly anisotropic media. The basic formulae are outlined and their accuracy demonstrated in comparison with the exact solution based on the zero-order ray theory and the Backus formula (1965). The linearization is extended also to complex media with curved interfaces. The computer program for calculating travel times in 2D, inhomogeneous, slightly anisotropic, complex media is briefly described. The numerical results obtained for a realistic situation and various types of waves are presented to enable the effects of anisotropy and the effects of inhomogeneity on the resulting travel times to be compared.
na uauua n¶rt;¶rt; ¶rt; ama¶rt;aa , anmau aaumn ¶rt;a. ¶rt; u n¶rt; au m u n muu nuuuu u m¶rt; aa (1965). a uauua n¶rt;¶rt; ¶rt; a ¶rt; uuuauau a¶rt;a. am nuaa uuma naa ¶rt; ama¶rt;a ¶rt; ¶rt;. u mam ¶rt; a mun ¶rt;am m um m aumnuu u m ¶rt;¶rt;mu a a anmau .
  相似文献   
70.
In this study near-continuous time series of nitrate, electrical conductivity, and discharge were used to identify the dominating hydrological mechanisms that control nitrate export dynamics in two agricultural catchments. The main goal was to assess relationships between contrasting event based as well as long-term nitrate transport behaviour and catchment hydrology. Data records were obtained from online probes that allow field based high-frequency analyses over long time periods. The catchments of the Ammer River (southwestern Germany) and the Weida River (eastern Germany) are similar with respect to size (~100 km²), morphology, and climate and are dominated by agricultural use. Main differences are the stronger urbanization and the occurrence of karstic rocks in the Ammer catchment. Nitrate concentrations are high in water of both streams and range mostly between 20 and 50 mg l?1. Nitrate export in the Ammer catchment is dominated by baseflow and a minor second, diluting runoff component generated in urbanized areas. In contrast, nitrate dynamics of the Weida catchment is governed by the interplay of at least three runoff components, while the largest amount of nitrate is mobilized intermittently by a delayed fast component generated in the catchment’s soils during wet conditions. These interpretations, derived with one online probe at the outlet of each catchment, are well in line with the former modeling results. This study shows that high-resolution data obtained by online techniques offers a large potential to improve the conceptualization of dominating flow and transport processes at catchment scales at relatively low costs and effort.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号