首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   951篇
  免费   34篇
  国内免费   8篇
测绘学   20篇
大气科学   73篇
地球物理   198篇
地质学   373篇
海洋学   88篇
天文学   171篇
综合类   5篇
自然地理   65篇
  2023年   5篇
  2022年   6篇
  2021年   19篇
  2020年   20篇
  2019年   14篇
  2018年   33篇
  2017年   30篇
  2016年   41篇
  2015年   30篇
  2014年   42篇
  2013年   56篇
  2012年   52篇
  2011年   60篇
  2010年   41篇
  2009年   64篇
  2008年   54篇
  2007年   52篇
  2006年   51篇
  2005年   42篇
  2004年   24篇
  2003年   34篇
  2002年   36篇
  2001年   27篇
  2000年   20篇
  1999年   15篇
  1998年   14篇
  1997年   10篇
  1996年   9篇
  1995年   10篇
  1994年   4篇
  1993年   9篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1967年   1篇
排序方式: 共有993条查询结果,搜索用时 19 毫秒
41.
A range of independently characterised reference materials (RMs) for LA‐ICP‐MS, used for the determination of the platinum‐group elements (PGE) and Au in a sulfide matrix, were analysed and compared: 8b, PGE‐A, NiS‐3, Po727‐T1, Po724‐T and the Lombard meteorite. The newly developed RM NiS‐3 was used as the RM for the calibration of all LA‐ICP‐MS analyses and the measured concentrations of the other RMs compared against their published concentrations. This data were also used to assess the consistency of concentrations calibrated against the different RMs. It was found that Po727‐T1 and 8b produced results that were comparable, within uncertainty, for all elements. Po727‐T1 also produced consistent results with NiS‐3 for all elements. All other RMs showed differences for some elements, especially Ru in Po724‐T, and Os, Ir and Au in PGE‐A. The homogeneity of the PGE and Au in each RM was assessed, by comparing the precision of multiple LA‐ICP‐MS spot analyses with the average uncertainty of the signal. Po724‐T, Po727‐T1 and the Lombard meteorite were found to be homogeneous for all elements, but 8b, PGE‐A and NiS‐3 were heterogeneous for some elements. This is the first direct comparison between a range of independently characterised PGE and Au LA‐ICP‐MS RMs.  相似文献   
42.
43.
The behavior of chalcophile metals in volcanic environments is important for a variety of economic and environmental applications, and for understanding large-scale processes such as crustal recycling into the mantle. In order to better define the behavior of chalcophile metals in ocean island volcanoes, we measured the concentrations of Re, Cd, Bi, Cu, Pb, Zn, Pt, S, and a suite of major elements and lithophile trace elements in moderately evolved (6-7% MgO) tholeiitic glasses from Ko’olau and Moloka’i volcanoes. Correlated variations in the Re, Cd, and S contents of these glasses are consistent with loss of these elements as volatile species during magmatic outgassing. Bismuth also shows a good correlation with S in the Ko’olau glasses, but undegassed glasses from Moloka’i have unexpectedly low Bi contents. Rhenium appears to have been more volatile than either Cd or Bi in these magmas.Undegassed glasses with 880-1400 ppm S have 1.2-1.5 ppb Re and 130-145 ppb Cd. In contrast, outgassed melts with low S (<200 ppm) are depleted in these elements by factors of 2-5. Key ratios such as Re/Yb and Cu/Re are fractionated significantly from mantle values. Copper, Pb, and Pt contents of these glasses show no correlation with S, ruling out segregation of an immiscible magmatic sulfide phase as the cause of these variations. Undegassed Hawaiian tholeiites have Re/Yb ratios significantly higher than those of MORB, and extend to values greater than that of the primitive mantle. Loss of Re during outgassing of ocean island volcanoes, may help resolve the apparent paradox of low Re/Os ratios in ocean island basalts with radiogenic Os isotopic compositions. Plume source regions with Re/Yb ratios greater than that of the primitive mantle may provide at least a partial solution to the “missing Re” problem in which one or more reservoirs with high Re/Yb are required to balance the low Re/Yb of MORB.Lithophile trace element compositions of most Ko’olau and Moloka’i tholeiites are consistent with variable degrees of melting of fertile mantle peridotite. However, light rare earth element (LREE)-enriched glasses have trace element compositions more consistent with a garnet-rich source having a distinctive trace element composition. This provides additional evidence for a unique source component possibly related to recycled oceanic crust contributing to Ko’olau tholeiites.  相似文献   
44.
Natural Hazards - This paper studies different machine learning methods for solving the regression problem of estimating the marine surge value given meteorological data. The marine surge is...  相似文献   
45.
The investigated chromitite dike is located at the top of an upwelling mantle structure of the Oman ophiolite (Maqsad diapir), in undeformed dunites displaying evidence for magma impregnation and circulation, just below the paleo-ridge axis. The chromitite dike is undeformed, its shape is that of an upward widening tube. It exhibits an internal layering which is roughly perpendicular to the cavity axis and comprises a vertical succession of four main layers showing a graded-bedding. Chromitite magmatic structures are beautifully preserved and result from a progressive crystallization from small euhedral crystals to wide octahedron-shaped nodules; dissolution textures provide evidence for late magmatic desequilibrium; sedimentation structures include flattening of the largest nodules. The silicate matrix comprises poikilitic forsterite and a locally abundant association of primary pargasite and plagioclase and alteration minerals (vesuvianite-chlorite-dolomite); pargasite inclusions are very abundant in the chromite. Chromite composition changes from one layer to the other and from core to rim in the chromite nodules (chromium decreases and titanium increases); Ti contents are generally high (0.4 to 0.8 wt.% TiO2) with respect to podiform chromites. Platinum-group elements are not abundant but they show a strong fractionation at the scale of the orebody and of the main graded-bedded layers (Pd/Ir ratio varies from 0.5 to 11.5). REE patterns of chromitite parallel to those of gabbros and furthermore display a sea water related hydrothermal alteration (Ce negative anomaly).

The chromitite dike of Maqsad provides evidence for the crystallization of chromitite bodies in subvertical magma conduits below oceanic ridges; it corroborates the model of Cassard et al. (1981) and Lago et al. (1982) concerning the formation of chromitite pods in ophiolites which were later deformed and transposed into the horizontal plane due to the plastic flow prevailing away from the paleo-axial zone. Layering and chromite compositional variations are ascribed to a multicellular convective system segregating various stocks of chromite particles either in the upwelling flow of fresh magma or in the convective cells of fractionated residual magma in the confined part of the cavity. The estimated life-time for the magma influx is very short (<2 months). The parent-magma was probably of MORB-type and already fractionated (Ti-rich and PGE-poor), which is consistent with the strong evidence of magma-peridotite interactions in the core of the Maqsad diapir. Hydrous fluids were present during chromite crystallization (pargasite inclusions) suggesting that fluid-rich melts occur in the upper mantle.  相似文献   

46.
Amphibians are well known as being one of the main groups of animals today most threatened by environmental changes but they are also some of the least well understood of all terrestrial vertebrates. This gap in knowledge is much greater as we look further back into the relatively recent past, despite representing an invaluable resources in archaeological and palaeontological assemblages that are more indicative of palaeoclimate conditions than most other vertebrate taxa. This in part stems from their remains being typically much less studied, partly due to the less common forms of expertise required for identifications based on skeletal morphology – the most frequently observed tissue that remains in ancient assemblages. Here we apply a method of biomolecular species identification by collagen peptide mass fingerprinting to the British Late Pleistocene assemblage of Pin Hole Cave (Creswell Crags, UK) as well as a range of relevant extant taxa for comparison. Our results demonstrate the ability to separate at the species level with all modern taxa investigated, allowing for the identification of these archaeological remains to the amphibian taxa known to exist in Late Pleistocene Britain. Analyses of the Pin Hole assemblage found a dominance of the two species previously known from the site (common frogs and toads: Rana temporaria and Bufo bufo, respectively) and also a small number of the rarer natterjack toad (Epidalea calamita) not previously identified in the Creswell Crags region but known from other sites in the UK; additionally, one specimen appeared to yield the fingerprint of the moor frog (R. arvalis), now extinct in the UK. As such, collagen fingerprinting is here shown to widen the known palaeobiodiversity of taxa, and highlights the further potential to enhance our understanding of climate change in the past.  相似文献   
47.
48.
The behavior of nickel in the Earth’s mantle is controlled by sulfide melt–olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe–Ni composition of molten sulfide in the Earth’s upper mantle via sulfide melt–olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt \(X_{{{\text{Ni}}}}^{{{\text{Sulfide}}}}=\frac{{{\text{Ni}}}}{{{\text{Ni}}+{\text{Fe}}}}\) (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of \({f_{{{\text{O}}_{\text{2}}}}}\) on Fe–Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31–46, 1995), “zero time” experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0?±?1.0 log units more reduced than the fayalite–magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ ??1 or more oxidized (suite 4). For the reduced (suites 1–3) experiments, Fe–Ni distribution coefficients \(K_{{\text{D}}}^{{}}=\frac{{(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}/X_{{{\text{Fe}}}}^{{{\text{sulfide}}}})}}{{(X_{{{\text{Ni}}}}^{{{\text{olivine}}}}/X_{{{\text{Fe}}}}^{{{\text{olivine}}}})}}\) are small, averaging 10.0?±?5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of KD (21.1–25.2). Compared to previous determinations at 100 kPa, values of KD from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem attributable to differences in temperature and pressure between experimental studies. It may be related in part to the effects of metal/sulfur ratio in sulfide melt. Application of these results to the composition of molten sulfide in peridotite indicates that compositions are intermediate in composition (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.4–0.6) in the shallow mantle at 50 km, becomes more Ni rich with depth as the O content of the melt diminishes, reaching a maximum (0.6–0.7) at depths near 80–120 km, and then becomes more Fe rich in the deeper mantle where conditions are more reduced, approaching (\(X_{{{\text{Ni}}}}^{{{\text{sulfide}}}}\)?~?0.28)?>?140 km depth. Because Ni-rich sulfide in the shallow upper mantle melts at lower temperature than more Fe-rich compositions, mantle sulfide is likely molten in much of the deep continental lithosphere, including regions of diamond formation.  相似文献   
49.
We have investigated the near liquidus phase relations of a primitive absarokite from the Mascota region in western Mexico. Sample M.102 contains ~11.6 wt% MgO, Mg#=0.73 and the lava contains Fo90 olivine phenocrysts, indicating near equilibrium with the mantle. High-pressure experiments on a synthetic analogue of the absarokite composition containing low and high H2O abundances of (~2 and ~5 wt%, respectively) were performed in a piston cylinder apparatus over the pressure range of 1.2 to 2.0 GPa. The composition containing ~2 wt% H2O is multiply saturated with olivine and orthopyroxene at 1.6 GPa and 1,400 °C. At the same pressure, clinopyroxene appears 30 °C below the liquidus. At an H2O content of ~5 wt% the multiple saturation with olivine and orthopyroxene occurs at 1.7 GPa and 1,300 °C. Assuming a batch-melting process, we suggest that the primitive absarokite was segregated from a depleted lherzolite or harzburgite residue at ~50 km, placing the depth of origin well within the mantle wedge beneath the Jalisco Block. A low degree (<5 %wt%) batch-melt of an original metasomatized depleted lherzolite or harzburgite source would contain the observed trace element abundances found in M.102. The liquidus phase relations are not consistent with the presence of non-peridotitic veins at the depth of last equilibration. Therefore, we propose that the Mascota absarokites segregated at an apparent melt fraction of less than 5% from a depleted peridotitic source. Melting first began at a greater depth as a small degree H2O- and trace element- rich melt of a metasomatized peridotite that ascended into the overlying wedge and re-equilibrated with shallower, hotter mantle.Editorial responsibility: J. Hoefs  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号