首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49050篇
  免费   1997篇
  国内免费   368篇
测绘学   1167篇
大气科学   3320篇
地球物理   11704篇
地质学   16920篇
海洋学   4397篇
天文学   10798篇
综合类   102篇
自然地理   3007篇
  2021年   532篇
  2020年   553篇
  2019年   705篇
  2018年   1312篇
  2017年   1283篇
  2016年   1648篇
  2015年   1122篇
  2014年   1578篇
  2013年   2779篇
  2012年   1661篇
  2011年   2133篇
  2010年   1932篇
  2009年   2388篇
  2008年   2035篇
  2007年   2049篇
  2006年   1841篇
  2005年   1546篇
  2004年   1498篇
  2003年   1458篇
  2002年   1356篇
  2001年   1216篇
  2000年   1129篇
  1999年   886篇
  1998年   885篇
  1997年   894篇
  1996年   715篇
  1995年   693篇
  1994年   672篇
  1993年   609篇
  1992年   571篇
  1991年   533篇
  1990年   553篇
  1989年   538篇
  1988年   504篇
  1987年   584篇
  1986年   529篇
  1985年   631篇
  1984年   692篇
  1983年   626篇
  1982年   567篇
  1981年   604篇
  1980年   497篇
  1979年   486篇
  1978年   464篇
  1977年   461篇
  1976年   409篇
  1975年   410篇
  1974年   408篇
  1973年   409篇
  1971年   262篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Abstract— It has now been about a decade since the first demonstrations that hypervelocity particles could be captured, partially intact, in aerogel collectors. But the initial promise of a bonanza of partially‐intact extraterrestrial particles, collected in space, has yet to materialize. One of the difficulties that investigators have encountered is that the location, extraction, handling and analysis of very small (10 μm and less) grains, which constitute the vast majority of the captured particles, is challenging and burdensome. Furthermore, current extraction techniques tend to be destructive over large areas of the collectors. Here we describe our efforts to alleviate some of these difficulties. We have learned how to rapidly and efficiently locate captured particles in aerogel collectors, using an automated microscopic scanning system originally developed for experimental nuclear astrophysics. We have learned how to precisely excavate small access tunnels and trenches using an automated micromanipulator and glass microneedles as tools. These excavations are only destructive to the collector in a very small area—this feature may be particularly important for excavations in the precious Stardust collectors. Using actuatable silicon microtweezers, we have learned how to extract and store “naked” particles—essentially free of aerogel—as small as 3 μm in size. We have also developed a technique for extracting particles, along with their terminal tracks, still embedded in small cubical aerogel blocks. We have developed a novel method for storing very small particles in etched nuclear tracks. We have applied these techniques to the extraction and storage of grains captured in aerogel collectors (Particle Impact Experiment, Orbital Debris Collector Experiment, Comet‐99) in low Earth orbit.  相似文献   
12.
13.
Measurement of variations in the radial velocities of stars due to the reflex orbital motion of the star around the planetary-system barycenter constitutes a powerful method of searching for substellar or planetary mass companions. After several years of patient data acquisition, radial-velocity searches for planetary systems around other stars are now beginning to bear fruit. In late 1995 and early 1996, three candidate systems were announced with Jovian-mass planets around solar-type stars. The current paradigm for low-mass star formation suggests that planetary systems should be able to form in the circumstellar disks surrounding young stellar objects. These newly discovered systems, and other discoveries which will soon follow them, will test critically our understanding of the processes of star- and planet-formation. We review the techniques used in these radial-velocity searches and their results to date. We then discuss planned improvements in the surveys, and the prospects for the next 20 years.  相似文献   
14.
The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, uses its large X-ray beam line facility PANTER for testing X-ray astronomical instrumentation. A number of telescopes, gratings, filters, and detectors, e.g. for astronomical satellite missions like Exosat, ROSAT, Chandra (LETG), BeppoSAX, SOHO (CDS), XMM-Newton, ABRIXAS, Swift (XRT), have been successfully calibrated in the soft X-ray energy range (< 15keV). Moreover, measurements with mirror test samples for new missions like ROSITA and XEUS have been carried out at PANTER. Here we report on an extension of the energy range, enabling calibrations of hard X-ray optics over the energy range 15–50 keV. Several future X-ray astronomy missions (e.g., Simbol-X, Constellation-X, XEUS) have been proposed, which make use of hard X-ray optics based on multilayer coatings. Such optics are currently being developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA. These optics have been tested at the PANTER facility with a broad energy band beam (up to 50 keV) using the XMM-Newton EPIC-pn flight spare CCD camera with its good intrinsic energy resolution, and also with monochromatic X-rays between C-K (0.277 keV) and Cu-Kα (8.04 keV). PACS: 95.55.Ka, 95.55.Aq, 41 50.+h, 07.85.Fv  相似文献   
15.
16.
Abstract— We have analyzed several types of data associated with the well‐documented fall of the Neuschwanstein meteorites on April 6, 2002 (a total of three meteorites have been recovered). This includes ground‐based photographic and radiometer data as well as infrasound and seismic data from this very significant bolide event (Spurný et al. 2002, 2003). We have also used these data to model the entry of Neuschwanstein, including the expected dynamics, energetics, panchromatic luminosity, and associated fragmentation effects. In addition, we have calculated the differential efficiency of acoustical waves for Neuschwanstein and used these values to compare against the efficiency calculated using available ground‐based infrasound data. This new numerical technique has allowed the source height to be determined independent of ray tracing solutions. We have also carried out theoretical ray tracing for a moving point source (not strictly a cylindrical line emission) and for an infinite speed line source. In addition, we have determined the ray turning heights as a function of the source height for both initially upward and downward propagating rays, independent of the explicit ray tracing (detailed propagation path) programs. These results all agree on the origins of the acoustic emission and explicit source heights for Neuschwanstein for the strongest infrasonic signals. Calculated source energies using more than four different independent approaches agree that Neuschwanstein was certainly <500 kg in initial mass, given the initial velocity of 20.95 km/s, resulting in an initial source energy ≤0.0157‐0.0276 kt TNT equivalent (4.185 times 1012 J). Local source energies at the calculated infrasonic/seismic source altitudes are up to two orders of magnitude smaller than this initial source energy.  相似文献   
17.
Vertical drains are usually installed in subsoil consisting of several layers. Due to the complex nature of the problem, over the past decades, the consolidation properties of multi‐layered ground with vertical drains have been analysed mainly by numerical methods. An analytical solution for consolidation of double‐layered ground with vertical drains under quasi‐equal strain condition is presented in this paper. The main steps for the computation procedure are listed. The convergence of the series solution is discussed. The comparisons between the results obtained by the present analytical method and the existing numerical solutions are described by figures. The orthogonal relation for the system of double‐layered ground with vertical drains is proven. Finally, some consolidation properties of double‐layered ground with vertical drains are analysed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
18.
Abstract— Calculations of the formation of seven types of chondrules in Semarkona from a gas of solar composition were performed with the FACT computer program to predict the chemistries of oxides (including silicates), developed by the authors and their colleagues. The constrained equilibrium theory was used in the calculations with two nucleation constraints suggested by nucleation theory. The first constraint was the blocking of Fe and other metal gaseous atoms from condensing to form solids or liquids because of very high surface free energies and high surface tensions of the solid and liquid metals, respectively. The second constraint was the blocking of the condensation of solids and the formation of metastable liquid oxides (including silicates) well below their liquidus temperatures. Our laboratory experiments suggested subcooling of type IIA chondrule compositions of 400 degrees or more below the liquidus temperature. The blocking of iron leads to a supersaturation of Fe atoms, so that the partial pressure of Fe (pFe) is larger than the partial pressure at equilibrium (pFe(eq)). The supersaturation ratio S = pFe/pFe(eq) becomes larger than 1 and increases rapidly with a decrease in temperature. This drives the reaction Fe + H2O ? H2 + FeO to the right. With S = 100, the activity of FeO in the liquid droplet is 100 times as large as the value at equilibrium. The FeO activities are a function of temperature and provide relative average temperatures of the crystallization of chondrules. Our calculations for the LL3.0 chondrite Semarkona and our study of some non‐equilibrium effects lead to accurate representations of the compositions of chondrules of types IA, IAB, IB, IIA, IIAB, IIB, and CC. Our concepts readily explain both the variety of FeO concentrations in the different chondrule types and the entire process of chondrule formation. Our theory is unified and could possibly explain the formation of chondrules in all chondritic meteorites as well as provide a simple explanation for the complex chemistries of chondrites, and especially for type 3 chondrites.  相似文献   
19.
20.
Cygnus A     
Cygnus A was the first hyper-active galaxy discovered, and it remains by far the closest of the ultra-luminous radio galaxies. As such, Cygnus A has played a fundamental role in the study of virtually all aspects of extreme activity in galaxies. We present a review of jet theory for powering the double-lobed radio emitting structures in powerful radio galaxies, followed by a review of observations of Cygnus A in the radio, optical, and X-ray relevant to testing various aspects of jet theory. Issues addressed include: jet structure from pc- to kpc-scales, jet stability, confinement, composition, and velocity, the double shock structure for the jet terminus and the origin of multiple radio hotspots, the nature of the filamentary structure in the radio lobes, and the hydrodynamic evolution of the radio lobes within a dense cluster atmosphere, including an analysis of pressure balance between the various gaseous components. Also discussed are relativistic particle acceleration and loss mechanisms in Cygnus A, as well as magnetic field strengths and geometries both within the radio source, and in the intracluster medium. We subsequently review the classification, cluster membership, and the emission components of the Cygnus A galaxy. The origin of the activity is discussed. Concentrating on the nuclear regions of the galaxy, we review the evidence for an obscured QSO, also given the constraints on the orientation of the radio source axis with respect to the sky plane. We present an overview of models of central engines in AGN and observations of Cygnus A which may be relevant to testing such models. We conclude with a brief section concerning the question of whether Cygnus A is representative of powerful high redshift radio galaxies. Received October 10, 1995  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号