首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4917篇
  免费   144篇
  国内免费   60篇
测绘学   163篇
大气科学   418篇
地球物理   1100篇
地质学   1834篇
海洋学   446篇
天文学   851篇
综合类   15篇
自然地理   294篇
  2023年   16篇
  2022年   52篇
  2021年   68篇
  2020年   76篇
  2019年   70篇
  2018年   156篇
  2017年   151篇
  2016年   189篇
  2015年   121篇
  2014年   156篇
  2013年   255篇
  2012年   213篇
  2011年   293篇
  2010年   229篇
  2009年   307篇
  2008年   240篇
  2007年   199篇
  2006年   230篇
  2005年   231篇
  2004年   302篇
  2003年   228篇
  2002年   168篇
  2001年   116篇
  2000年   112篇
  1999年   84篇
  1998年   97篇
  1997年   70篇
  1996年   37篇
  1995年   39篇
  1994年   42篇
  1993年   35篇
  1992年   43篇
  1991年   24篇
  1990年   36篇
  1989年   14篇
  1988年   17篇
  1987年   20篇
  1986年   19篇
  1985年   16篇
  1984年   21篇
  1983年   25篇
  1982年   17篇
  1981年   26篇
  1978年   23篇
  1977年   21篇
  1976年   15篇
  1975年   22篇
  1974年   16篇
  1973年   16篇
  1971年   14篇
排序方式: 共有5121条查询结果,搜索用时 15 毫秒
61.
62.
63.
Acid–base equilibrium constants of triethanolamine (TEA) have been determined by potentiometric titrations with a glass electrode, at 25 °C. Ionic strength was kept constant with only one electrolyte (using one of these salts: NaCl, KCl, MgCl2 or CaCl2), with binary mixtures of MgCl2 and CaCl2, and finally, in a solution with a composition approximately similar to that of natural seawater without sulfate. Equilibrium constants have been expressed in function of ionic strength by means of Pitzer equations and interaction parameters proposed in this theory have been obtained. It has been found that acid–base behaviour of TEA depends greatly on the salt used: basicity of TEA is decreased by CaCl2, while it is increased by the other electrolytes used in this work.  相似文献   
64.
The consequences of two upwelling events in mid- (MW) and late (LW) winter on biogeochemical and phytoplankton patterns were studied in the Pontevedra Ria and compared with the patterns measured under typical winter conditions and under a summer upwelling event. Thermohaline patterns measured during the mid-winter upwelling event (MW-up) revealed the intrusion of saltier seawater (35.9) into the ria associated with the Iberian Poleward Current (IPC). During the late-winter upwelling event (LW-up), the seawater which had welled up into the ria showed characteristics of the Eastern North Atlantic Central Water mass (ENACW). In both cases the measured water residence time (4 days during MW-up and 10 days during LW-up) was related to both meteorological and fluvial forcing. This residence time contrasts with that of summer upwelling (7 days) and with that estimated under unfavorable upwelling atmospheric conditions (2–4 weeks). During MW-up, the ria became poor in nutrients due to continental freshwater dilution, associated with the shorter residence time of the water, and the intrusion of IPC, which is a water body poor in nutrient salts: 2.9 μM of nitrate, 0.1 μM of phosphate and 1.5 μM of silicate. During this event, the ria exported 3.4 molDIN s−1, compared with 6.9 molDIN s−1 in non-upwelling conditions. Phytoplankton showed a uniform distribution throughout the ria, as during unfavorable upwelling conditions, and was characterized by the dominance of diatoms, mainly Nitzschia longissima and Skeletonema costatum. During LW-up, a nutrient depletion in the photic layer also occurred, but as a result of a phytoplankton spring bloom developing at this time. The ria was a nutrient trap where 4.1 molDIN s−1 were processed by photosynthesis. This budget is three times higher than the one under non-upwelling conditions. In contrast with the MW-up, which had no effect on primary production, during LW-up the ria became more productive, although not as productive as during a summer upwelling event (9.9 molDIN s−1). The taxonomic composition of the phytoplankton community did not change noticeably during LW-up and the summer upwelling, with the same species present and changing only in relative proportions. Diatoms were always the dominant microphytoplankton community, with Pseudonitzschia pungens, Thalassionema nitzschioides and several species of Chaetoceros as characteristic taxons.  相似文献   
65.
66.
67.
The transport pathways of fine sediments (fraction <2 μm) along the Brazilian continental shelf from Ceará to the Amazon River mouth were studied by means of clay mineral analyses. On the continental shelf southeast of the Amazon mouth, fluctuations in clay mineral compositions reflect simple mixing between the suspended load of the North Brazil Current and sediment from several smaller rivers. Previously, clay mineral variations west of the Amazon mouth have been explained by variable settling velocities of different grain-size classes within the <2 μm fraction or by selective coagulation of individual clay mineral groups. By contrast, our experiments with river bank samples show that selective coagulation does not occur in Amazon River sediments. A more appropriate explanation for observed variations in clay mineral composition off the Amazon mouth seems to be, similarly to that for the shelf between Ceará and the Amazon mouth, a mixing of Amazon sediments with suspended material of the North Brazil Current. This interpretation is supported by data on clay mineral composition east and south of the Amazon mouth, showing more affinity to sediments of the North Brazil Current than to the suspended load of the Amazon River. Additionally, relatively low sedimentation rates and low concentrations of fine-grained sediments on the shelf suggest that high riverine input by the Amazon River does not overprint the sediments of the North Brazil Current in this region. The strong North Brazil Current shunts the Amazon suspended load in a north-westerly direction along the north-eastern coast of South America. Hence, stronger sedimentation of Amazon sediments would occur only west of the river mouth.  相似文献   
68.
Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline lagoon with salinity varying spatially from 45 to 56. We collected water samples during monthly cruises throughout the lagoon, and along the streams feeding the system, from April 1991 to March 1992. Nutrients and other water quality parameters exhibited great spatial and temporal variations. Mass balance calculations indicate large amounts of anthropogenic nutrient inputs. The data indicate that the lagoon currently is oligotrophic but is in a state of transition to become a mesotrophic system. Molar dissolved inorganic nitrogen:dissolved inorganic phosphorus (DIN/DIP) varied between 2.2:1 and 659:1 with a volume-weighted average of 22:1. The high DIN/DIP ratio contrasts with that found in nearby lagoons, suggesting that phytoplankton primary production is limited by phosphorus in Lagoa de Araruama. The major loss of DIP is apparently driven by biological assimilation and diagenic reactions in the sediments. Calculations indicate that the lagoon is slightly net autotrophic at +0.9 mol C m−2 yr−1. This suggests that the biomass of the primary producers is restricted by phosphorus availability. Phosphorus retention in the sediment and the hypersaline state of the lagoon prevent changes in autotrophic communities and the formation of eutrophic conditions.  相似文献   
69.
Measurements of surface partial pressure of CO2 and water column alkalinity, pHT, nutrients, oxygen, fluorescence and hydrography were carried out, south of the Canary Islands during September 1998. Cyclonic and anticyclonic eddies were alternatively observed from the northwestern area to the central area of the Canary Islands. Nutrient pumping and vertical uplifting of the deep chlorophyll maximum by cyclonic eddies were also ascertained by upward displacement of dissolved inorganic carbon. A model was applied to determine the net inorganic carbon balance in the cyclonic eddy. The fluxes were determined considering both the diffusive and convective contributions from the upward pumping and the corresponding horizontal transport of water outside the area. An increase in the total inorganic carbon concentration in the upper layers inside the eddy field of 133 mmol C m− 2 d− 1 was determined. The upward flux of inorganic carbon decreased the effect of the increased primary production on the carbon dioxide chemistry. The reduced fCO2 inside the cyclonic eddy, 15 μatm lower than that observed in non-affected surface water, was explained by thermodynamic aspects, biological activity, eddy upward pumping and diffusion and air–sea water exchange effects.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号