首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   1篇
  国内免费   1篇
地球物理   6篇
地质学   4篇
海洋学   3篇
天文学   34篇
自然地理   1篇
  2023年   1篇
  2021年   1篇
  2019年   2篇
  2018年   5篇
  2015年   1篇
  2014年   13篇
  2013年   14篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  1999年   1篇
  1998年   2篇
排序方式: 共有48条查询结果,搜索用时 11 毫秒
41.
The properties of heavy-ion-acoustic (HIA) solitary structures associated with the nonlinear propagation of cylindrical and spherical electrostatic perturbations in an unmagnetized, collisionless dense plasma system has been investigated theoretically. Our considered model contains degenerate electron and inertial light ion fluids, and positively charged static heavy ions, which is valid for both of the non-relativistic and ultra-relativistic limits. The Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations have been derived by employing the reductive perturbation method, and numerically examined in order. It has been found that the effect of degenerate pressure and number density of electron and inertial light ion fluids, and positively charged static heavy ions significantly modify the basic features of HIA solitary waves. It is also noted that the inertial light ion fluid is the source of dispersion for HIA waves and is responsible for the formation of solitary waves. The basic features and the underlying physics of HIA solitary waves, which are relevant to some astrophysical compact objects, are briefly discussed.  相似文献   
42.
A rigorous theoretical investigation has been made of arbitrary amplitude dust-acoustic solitary structures in an unmagnetized three-component dusty plasma whose constituents are an inertial charged dust fluid and Boltzmann distributed ions and electrons. The pseudo-potential approach and the reductive perturbation technique are employed for this study. It is found from both weakly and highly nonlinear analyses that the dusty plasma model can support solitary waves only with negative potential but not with positive potential. The effects of equilibrium free electron density and its temperature on these solitary structures are discussed. The implications of these results to some astrophysical and space plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
43.
The nonlinear propagation of dust acoustic (DA) waves in an unmagnetized dusty plasma system consisting of negatively charged mobile dust fluid, Boltzmann distributed electrons, and two-temperature nonthermally distributed ions, is rigorously investigated. The reductive perturbation method has been employed to derive the Burgers equation. The hydrodynamic equation for inertial dust grains has been used to derive the Burgers equation. The effects of two temperature nonthermally distributed ions and dust kinematic viscosity, which are found to significantly modify the basic features of DA shock waves, are briefly discussed. Our present investigation can be effectively utilized in many astrophysical situations (e.g. satellite or spacecraft observations, Saturn’s E ring, etc.), which are discussed briefly in this analysis.  相似文献   
44.
A rigorous theoretical investigation has been made on multi-dimensional instability of obliquely propagating electrostatic dust-ion-acoustic (DIA) solitary structures in a magnetized dusty electronegative plasma which consists of Boltzmann electrons, nonthermal negative ions, cold mobile positive ions, and arbitrarily charged stationary dust. The Zakharov-Kuznetsov (ZK) equation is derived by the reductive perturbation method, and its solitary wave solution is analyzed for the study of the DIA solitary structures, which are found to exist in such a dusty plasma. The multi-dimensional instability of these solitary structures is also studied by the small-k (long wave-length plane wave) perturbation expansion technique. The combined effects of the external magnetic field, obliqueness, and nonthermal distribution of negative ions, which are found to significantly modify the basic properties of small but finite-amplitude DIA solitary waves, are examined. The external magnetic field and the propagation directions of both the nonlinear waves and their perturbation modes are found to play a very important role in changing the instability criterion and the growth rate of the unstable DIA solitary waves. The basic features (viz. speed, amplitude, width, instability, etc.) and the underlying physics of the DIA solitary waves, which are relevant to many astrophysical situations (especially, auroral plasma, Saturn’s E-ring and F-ring, Halley’s comet, etc.) and laboratory dusty plasma situations, are briefly discussed.  相似文献   
45.
Zooplankton plays an important role in aquatic food webs by fluxing of energy from primary producer to subsequent trophic levels in the food chain. The annual pattern of zooplankton communities and potential environmental drivers were studied in the Kohelia channel, Bangladesh from summer 2014 to spring 2015. Samples were collected using net at a depth of 1 m. A total of 32 species belonged to 18 orders, 27 families and 15 taxonomic groups were identified. Of these species, 22 distributed in all four seasons of which 8 were dominant and highly contributing to the total communities. Species number peaked in summer next to winter and fall in spring while maximum abundance was in summer and minimum in spring. Multivariate analyses showed that there was a clear annual pattern in the zooplankton communities. Species diversity and evenness peaked in spring but fall in autumn while the high value of species richness was found in winter. Biological-environmental best matching (BIO-ENV) analyses conformed that community pattern of zooplankton was mainly driven by transparency salinity, and temperature individually or combined with water nutrients. These results demonstrate that annual pattern of the zooplankton community shaped by channel environmental factors in subtropical channel ecosystems, thus might be used for community-based subtropical coastal water bioassessment.  相似文献   
46.
Gardner solitons (GSs) and double layers (DLs) of dust ion acoustic (DIA) waves in an electronegative plasma (composed of inertial positive and negative ions, Maxwellian cold electrons, non-thermal hot electrons, and negatively charged static dust) are studied. The reductive perturbation method is employed to derive the Korteweg-de Vries (K-dV), modified K-dV, and standard Gardner equations, which admits solitary wave and DLs solutions for σ around its critical value σ c (where σ c is the value of σ corresponding to the vanishing of the nonlinear coefficient of the K-dV equation). The parametric regimes for the existence of the GSs and DLs, are obtained. The basic features of DIA GSs and DLs (associated with negative structure only) are analyzed. It has been found that the characteristics of DIA GSs and DLs, are different from that of the K-dV solitons and mK-dV (mixed K-dV) solitons. The implications of our results to different space and laboratory plasma situations are discussed.  相似文献   
47.
Our objective here is to investigate a strongly coupled dusty plasma system with the presence of polarization force (PF). This plasma consists of superthermal electrons, Maxwellian ions, and negatively charged dust grains. The nonlinear propagation of dust-acoustic (DA) waves in such dusty plasma system has been theoretically investigated by employing the reductive perturbation method. The Burgers’ and K-dV equations have been derived to and numerically analyzed. It has been found that the dust-acoustic shock and solitary waves exist associated with a negative potential only, and that the effect of the dust fluid temperature significantly modifies the basic properties (amplitude and width) of such nonlinear waves’ potential structures. We hope that the results of our present investigation should help us in understanding the localized electrostatic disturbances in space and laboratory strongly coupled dusty plasmas with superthermal electrons and polarization force.  相似文献   
48.
A theoretical investigation has been performed on the nonlinear propagation of nonplanar (cylindrical and spherical) Gardner solitons (GSs) associated with the positron-acoustic (PA) waves in a four component plasma system consisting of nonthermal distributed electrons and hot positrons, mobile cold positrons, and immobile positive ions. The well-known reductive perturbation method has been employed to derive the modified Gardner (MG) equation. The basic features (viz. amplitude, polarity, speed, etc.) of nonplanar PA Gardner solitons (GSs) have been examined by the numerical analysis of the MG equation. It has been observed that the properties of the PA GSs in a nonplanar geometry differ from those in a planar geometry. It has been also investigated that the presence of nonthermal (Cairns distributed) electrons and hot positrons significantly modify the amplitude, polarity, speed, and thickness of such PA GSs. The results of our investigation should play an important role in understanding various interstellar space plasma environments as well as laboratory plasmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号