首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   0篇
测绘学   1篇
大气科学   3篇
地球物理   5篇
地质学   27篇
海洋学   12篇
天文学   31篇
  2023年   1篇
  2022年   4篇
  2021年   1篇
  2020年   6篇
  2019年   2篇
  2018年   8篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2006年   3篇
  2004年   3篇
  2003年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   3篇
  1994年   3篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1975年   1篇
  1969年   2篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
41.
Carbon dioxide, methane, and carbon monoxide are the carbon cycle gases, the data on their emissions are needed when monitoring air pollution and developing methods for reducing anthropogenic emissions to the atmosphere and for climate forecasting. The estimates of nocturnal area fluxes for CO2, CH4, and CO presented for a suburb of Saint Petersburg (Peterhof) are obtained using the box model and continuous observations of concentration of these gases. The mean values of CH4, CO2, and CO fluxes estimated for Peterhof for 2014–2015 are 44 ± 27, 6100 ± 4000, and 90 ± 100 t/(km2 year), respectively. The intensity of the CO area flux has pronounced seasonal variations characterized by the maximum of ~(160 ± 120) t/(km2 year) in November—February and by the minimum of ~(30 ± 20) t/(km2 year) in June-July. The analysis of the ratio of CO/CO2 fluxes identified the main types of anthropogenic sources typical of Peterhof: motor transport, natural gas combustion, and the use of wood stoves for the heating of private low-rise buildings (in the cold season).  相似文献   
42.
The space-time variability of the fields of CO, NO2, and O3 concentrations and contents in the troposphere of northwestern Russia is analyzed on the basis of experimental data and the results of numerical modeling. The influence that the St. Petersburg emission has on the concentrations and contents of CO, NO2, and O3 in the troposphere is estimated for March 2006. A comparison of the measurements of the total CO content and the tropospheric NO2 content with the results of modeling showed a qualitative and, in come cases, quantitative agreement between the results of calculations and experimental data. When synoptic conditions are determined, the St. Petersburg train can be detected at a distance of more than 300 km, which can affect the atmospheric air quality in adjacent countries.  相似文献   
43.
The paper is dedicated to studying the dynamics of the auroral ionosphere at the level of the sporadic Es layer during magnetospheric disturbances. A new approach to this problem, proposed in the paper, uses the geomagnetic PC index, which is calculated using the magnetic data in the polar caps of the northern and southern hemispheres and manifests the geoefficiency of the interplanetary electric field. It is shown that variations in the sporadic electron concentration in the auroral Es layer could be related to changes in the PC index with a high degree of statistical reliability. However, the character of precipitations of sporadic particles into the ionosphere under high (PC > 2 mV/m) and low (PC < 2 mV/m) magnetic activity differs substantially. During strong magnetic disturbances and under intensified electric fields in the interplanetary environment, the intensity of particle precipitation from the magnetosphere into the E region of the high-latitude ionosphere is governed by the values of the PC magnetic index. During weak magnetic disturbances, short-time pulses of an increase in the PC values, caused by the variability in electric field in the magnetosphere, are the main factor in the occurrence of sporadic ionization in the Es layer.  相似文献   
44.
The results obtained from ground-based spectroscopic measurements of column-average dry-air mole fractions of CO2 in the atmosphere over the St. Petersburg region are given for the period April 2009–October 2011 (~900 measurement runs, 151 measurement days). These results show significant variations in the CO2 mixing ratio in the atmosphere over the St. Petersburg region. The minimum value of this mixing ratio (373.1 ppm) was observed on April 27, 2011, and its maximum value (420.8 ppm) was observed on February 10, 2010. The typical seasonal behavior of the CO2 mixing ratio with its summer minimum was observed in 2009. In July 2010 and 2011, the values of the CO2 mixing ratio increased apparently due to high air temperatures. In 2010 an additional contribution to this increase in the CO2 mixing ratio could have been made by strong natural fires.  相似文献   
45.
Fabry-Pérot interferometric observations of the corona were carried out. The 6374 Å line shows radial velocities between 10 and 70 km sec-1, both positive and negative. Most profiles of the 6374 Å line are not Gaussian. The widths of the lines indicate unacceptably high temperatures, and thus suggest turbulent velocities, which appear to be of the same order as the line displacement velocities. Arguments are put forward that the corona consists mainly of individual non-turbulent knots with relative velocities similar to the measured ones.  相似文献   
46.

This article is devoted to a model of the migration of phosphorus and its compounds between the components of the environment and the evaluation of the phosphorus load on freshwater bodies on the scale of the subjects of the Russian Federation. The results of calculations described in this article show that a number of the subjects of the Russian Federation are susceptible to a high and extremely high risk of a negative impact of anthropogenic phosphorus on freshwater bodies.

  相似文献   
47.
48.
We compare the zonal-flow pattern in subsurface layers of the Sun with the distribution of surface magnetic features such as sunspots and polar faculae. We demonstrate that, in the activity belt, the butterfly pattern of sunspots coincides with the fast stream of zonal flows, although part of the sunspot distribution does spill over to the slow stream. At high latitudes, the polar faculae and zonal-flow bands have similar distributions in the spatial and temporal domains.  相似文献   
49.
Previous investigations by Makarov et al. have shown a relation between the peaks in the number of polar faculae and the peaks in the Wolf number. In cycles 20 and 22 the delay between peaks in polar faculae and Wolf number was 6.1 ± 0.1 year, north and south taken separately, as their peaks do not coincide. For the odd cycle 21, this shift was 5.6 years average. Polar faculae always precede the sunspots. The relevance of this for the dynamo mechanism is obvious. In cycle 23 the delay was 7.7 year (north) and 7.8 year (south). The approach of a deep minimum is probably responsible for this increased delay; thus for cycle 24 the delay between peaks of polar faculae and sunspots is expected to be at least 7.8 years and probably longer. The present polar faculae show 6 peaks above the smoothed average (north) and similarly 3 peaks south. The first peak for the sunspots will be at the earliest during the very end of 2007. As soon as one peak in the spots occurs the delay for cycle 24 can be estimated and the other peaks predicted.  相似文献   
50.
We used an automatic image-processing method to detect solar-activity features observed in white light at the Kislovodsk Solar Station. This technique was applied to automatically or semi-automatically detect sunspots and active regions. The results of this automated recognition were verified with statistical data available from other observatories and revealed a high detection accuracy. We also provide parameters of sunspot areas, of the umbra, and of faculae as observed in Solar Cycle 23 as well as the magnetic flux of these active elements, calculated at the Kislovodsk Solar Station, together with white-light images and magnetograms from the Michaelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO/MDI). The ratio of umbral and total sunspot areas during Solar Cycle 23 is ≈?0.19. The area of sunspots of the leading polarity was approximately 2.5 times the area of sunspots of the trailing polarity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号