首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   11篇
  国内免费   14篇
测绘学   23篇
大气科学   11篇
地球物理   57篇
地质学   146篇
海洋学   10篇
天文学   18篇
综合类   5篇
自然地理   17篇
  2024年   1篇
  2023年   1篇
  2022年   12篇
  2021年   21篇
  2020年   10篇
  2019年   12篇
  2018年   24篇
  2017年   16篇
  2016年   15篇
  2015年   17篇
  2014年   29篇
  2013年   29篇
  2012年   10篇
  2011年   11篇
  2010年   14篇
  2009年   7篇
  2008年   9篇
  2007年   8篇
  2006年   9篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1970年   1篇
排序方式: 共有287条查询结果,搜索用时 15 毫秒
11.
Desorption of Cu and low molecular weight dissolved organics are the primary factors that impact fate and transport of Cu in soils. To improve predictions of the toxicity and threat from Cu contaminated soil, it is critical that time-dependent desorption behavior be understood. In this paper, the effect of organic ligands citrate, malate, and succinate on the kinetics of Cu desorption from contaminated soils varying widely in soil characteristics was investigated at 25° C and the soils used were referred to as clay, calcareous and sandy soils. The amount of Cu released by the used organic ligands varied greatly with physicochemical properties of the soils. The rate of Cu release by different extractants was in the order citric > malic > succinic, which was consistent with the stability constants of Cu complexes with these ligands. The modified Freundlich and the Elovich and Parabolic diffusion models were used to describe dsorption of Cu2+ from the three studied soils as affected by the organic ligands. All of the models fit the data well with correlation coefficients ranging from 0.83 to 1.00 (P < 0.01). Each Model has a set of assumptions for the different physical and chemical properties of the systems to which they are being applied. The uses of these equations yield different magnitudes for the calculated variable, but the relationships between the soil + organic ligands and their effect (i.e., increase or decrease) on these variables are the same. Such information is critical, since Cu is used in a variety of industrial and manufacturing processes and is one of the most common contaminants found at hazardous waste sites.  相似文献   
12.
对研究区内花岗岩类的60个薄片进行了岩相学研究.研究的目的是确定区内岩石中普遍存在的矿物组成及结构类型.  相似文献   
13.

Design of reinforced soil structures is greatly influenced by soil–geosynthetic interactions at interface which is normally assessed by costly and time consuming laboratory tests. In present research, using the results of large-scale direct shear tests conducted on soil–anchored geogrid samples a model for predicting Enhanced Interaction Coefficient (EIC) is proposed enabling researchers/engineers easily, quickly and at no cost to estimate soil–geosynthetic interactions. In this regard well and poorly graded sands, anchors of three different size and anchorage lengths from the shear surface together with normal pressures of 12.5, 25 and 50 kPa were used. Artificial Intelligence (AI) called the Gene Expression Programming (GEP) was adopted to develop the model. Input variables included coefficients of curvature and uniformity, normal pressure, effective grain size, anchor base and surface area, anchorage length and the output variable was EIC. Contributions of input variables were evaluated using sensitivity analysis. Excellent correlation between the GEP-based model and the experimental results were achieved showing that the proposed model is well capable of effectively estimating soil–anchored geogrid enhanced interaction coefficient. Sensitivity analysis for parameter importance shows that the most influential variables are normal pressure (σn) and anchorage length (L) and the least effective parameters are average particle size (D50) and anchor base area (Ab).

  相似文献   
14.
15.
Dedolomitization of a dolocrete profile hosted in Mio-Pleistocene siliciclastic deposits in the area of Kuwait City, Arabian Gulf was investigated. Dolocrete dolomite crystals vary considerably in size, shape and internal structure; however, they are mostly zoned. Zonation is usually due to the alteration of cloudy and clear zones. The cloudy zones, which are mostly formed of disordered metastable dolomite, are more susceptible to dedolomitization than the stable, well ordered clear zones. Two modes of dedolomitization were recognized; the first involves complete dissolution of the metastable dolomite followed by precipitation of intracrystalline cavity-filling calcite. The second is a pseudomorphic replacement of dolomite by calcite. This replacement takes place by the simultaneous dissolution of dolomite and precipitation of calcite in such a manner that the original dolomite fabrics are inherited in the dedolomite. Exposed and near-surface dolocrete profile (less than 5 m deep) are almost completely dedolomitized and altered to secondary calcrete whereas subsurface profiles are slightly dedolomitized. Dedolomitization of the sub surface dolocrete profiles may indicate the effect of flushing by fresh groundwater; which flows from west to east, whereas the alteration of the exposed dolocrete profile could be attributed to be an effect of meteoric water. A new mode of calcrete genesis by dedolomitization and/or complete calcitization of precursor dolocrete is suggested.  相似文献   
16.
Blasting operations usually produce significant environmental problems which may cause severe damage to the nearby areas. Air-overpressure (AOp) is one of the most important environmental impacts of blasting operations which needs to be predicted and subsequently controlled to minimize the potential risk of damage. In order to solve AOp problem in Hulu Langat granite quarry site, Malaysia, three non-linear methods namely empirical, artificial neural network (ANN) and a hybrid model of genetic algorithm (GA)–ANN were developed in this study. To do this, 76 blasting operations were investigated and relevant blasting parameters were measured in the site. The most influential parameters on AOp namely maximum charge per delay and the distance from the blast-face were considered as model inputs or predictors. Using the five randomly selected datasets and considering the modeling procedure of each method, 15 models were constructed for all predictive techniques. Several performance indices including coefficient of determination (R 2), root mean square error and variance account for were utilized to check the performance capacity of the predictive methods. Considering these performance indices and using simple ranking method, the best models for AOp prediction were selected. It was found that the GA–ANN technique can provide higher performance capacity in predicting AOp compared to other predictive methods. This is due to the fact that the GA–ANN model can optimize the weights and biases of the network connection for training by ANN. In this study, GA–ANN is introduced as superior model for solving AOp problem in Hulu Langat site.  相似文献   
17.
In recent decades, attaining urban sustainability is the primary goal for urban planners and decision makers. Among various aspects of urban sustainability, environmental protection such as agricultural and forest conservations is very important in tropical countries like Malaysia. In this regard, compact urban development due to high density, rural development containment is known as the most sustainable urban forms. This paper attempts to propose an integrated modeling approach to predict the future land use changes by considering city compactness paradigms. First, the cellular automata (CA) were applied for calculating land use conversion. Next, weights-of-evidence (WoE) which is based on Bayes theory was utilized to calibrate CA model and to support the transitional rule assessment. Several urban-related parameters as well as compact city indicators were utilized to estimate the future land use maps. The results showed how compact development parameters and site characteristics can be combined using the WoE model to predict the probability of land use changes. The modeling approach supports the essential logic of probabilistic methods and indicates that spatial autocorrelation of various land use types and accessibility is the main drivers of urban land use changes.  相似文献   
18.
The ichnogenus Arachnostega Bertling, 1992 is recorded for the first time from a bioeroded, coral-rich, Middle Miocene limestone bed in the middle Siwa Escarpment Member (Marmarica Formation) at Siwa Oasis, northern Western Desert of Egypt. These burrowing traces are preserved on the surface of a few internal moulds of bivalves and gastropods. Until now, the ichnogenus Arachnostega included a single ichnospecies, A. gastrochaenae Bertling, 1992. In the material studied herein, two ichnospecies are identified, described, illustrated and compared with other, similar traces. One of these is a new ichnospecies of Arachnostega; this is here named A. siwaensis ichnosp. nov. It is distinguished from A. gastrochaenae in the possession of tunnels that usually branch in a V-pattern; intervals of ramification are longest in the main branch and decrease in second- and third-order branches. Arachnostega traces were produced in a warm, low-energy, shallow-marine (<10?m water depth) environment. Polychaetes are the most likely producers of marine Arachnostega, which are commonly occurred in the same studied bed. This new occurrence is significant in extending the known stratigraphical and geographical ranges of Arachnostega into the Middle Miocene of Egypt.  相似文献   
19.
Theoretical and Applied Climatology - Analysis of climatic variables is important for the detection and attribution of climate change trends and has received considerable attention from researchers...  相似文献   
20.
Diverse vulnerabilities of Bangladesh's agricultural sector in 16 sub-regions are assessed using experiments designed to investigate climate impact factors in isolation and in combination. Climate information from a suite of global climate models (GCMs) is used to drive models assessing the agricultural impact of changes in temperature, precipitation, carbon dioxide concentrations, river floods, and sea level rise for the 2040–2069 period in comparison to a historical baseline. Using the multi-factor impacts analysis framework developed in Yu et al. (2010), this study provides new sub-regional vulnerability analyses and quantifies key uncertainties in climate and production. Rice (aman, boro, and aus seasons) and wheat production are simulated in each sub-region using the biophysical Crop Environment REsource Synthesis (CERES) models. These simulations are then combined with the MIKE BASIN hydrologic model for river floods in the Ganges-Brahmaputra-Meghna (GBM) Basins, and the MIKE21 Two-Dimensional Estuary Model to determine coastal inundation under conditions of higher mean sea level. The impacts of each factor depend on GCM configurations, emissions pathways, sub-regions, and particular seasons and crops. Temperature increases generally reduce production across all scenarios. Precipitation changes can have either a positive or a negative impact, with a high degree of uncertainty across GCMs. Carbon dioxide impacts on crop production are positive and depend on the emissions pathway. Increasing river flood areas reduce production in affected sub-regions. Precipitation uncertainties from different GCMs and emissions scenarios are reduced when integrated across the large GBM Basins’ hydrology. Agriculture in Southern Bangladesh is severely affected by sea level rise even when cyclonic surges are not fully considered, with impacts increasing under the higher emissions scenario.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号