首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   10篇
  国内免费   6篇
测绘学   8篇
大气科学   8篇
地球物理   38篇
地质学   79篇
海洋学   3篇
天文学   6篇
综合类   1篇
自然地理   12篇
  2022年   9篇
  2021年   10篇
  2020年   9篇
  2019年   8篇
  2018年   16篇
  2017年   12篇
  2016年   9篇
  2015年   12篇
  2014年   15篇
  2013年   15篇
  2012年   5篇
  2011年   6篇
  2010年   9篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2002年   2篇
  1986年   1篇
排序方式: 共有155条查询结果,搜索用时 46 毫秒
151.
This paper proposes a decision support system for Yamchi reservoir operation in semi-arid region of Iran. The paper consists of the following steps: Firstly, the potential impacts of climate change on the streamflow are predicted. The study then presents the projections of future changes in temperature and precipitation under A2 scenario using the LARS-WG downscaling model and under RCP2.6, RCP4.5, and RCP8.5 using the statistical downscaling model (SDSM) in the northwestern of Iran. To do so, a general circulation model of HadCM3 is downscaled by using the LARS-WG model. As a result, the average temperature, for the horizon 2030 (2011–2030), will increase by 0.77 °C and precipitation will decrease by 11 mm. Secondly, the downscaled variables are used as input to the artificial neural network to investigate the possible impact of climate change on the runoffs. Thirdly, the system dynamics model is employed to model different scenarios for reservoir operation using the Vensim software. System dynamics is an effective approach for understanding the behavior of complex systems. Simulation results demonstrate that the water shortage in different sectors (including agriculture, domestic, industry, and environmental users) will be enormously increased in the case of business-as-usual strategy. In this research, by providing innovative management strategies, including deficit irrigation, the vulnerability of reservoir operation is reduced. The methodology is evaluated by using different modeling tests which then motivates using the methodology for other arid/semi-arid regions.  相似文献   
152.
Rockfill is the most abundant building material. It is often used for water retention under different contexts, such as dams, embankments or drainage systems. Climate change may cause water levels to rise in reservoirs. As rockfill structures are not able to resist strong overtopping flow, rising water levels will constitute a danger for rockfill dam stability as well as for people living nearby. This work is aimed at the development of an empirical formula that enables calculation of the critical water level of overflow at the crest from the geometrical and physical parameters of a dam. To achieve these objectives, several experimental tests on a rockfill dam model with two different impervious cores, moraine with a sand filter and an empty wooden formwork, were conducted in a hydraulic channel at the hydro-environmental laboratory at École Polytechnique de Montréal. The purpose of these tests was to study the initiation of a riprap failure under the influence of different variables, such as rock size, riprap bank, downstream side slope and bed slope. Results showed linear trends between the critical water level and both the downstream side slope and bed slope. Also, a power trend was observed between the critical level and riprap grain size. A formula that gives the critical overtopping water level was developed from these results.  相似文献   
153.
This paper presents deformation analysis of Lake Urmia causeway (LUC) embankments in northwest Iran using observations from interferometry synthetic aperture radar (InSAR) and finite element model (FEM) simulation. 58 SAR images including 10 ALOS, 30 Envisat and 18 TerraSAR-X are used to assess settlement of the embankments during 2003–2013. The interferometric dataset includes 140 differential interferograms which are processed using InSAR time series technique of small baseline subset approach. The results show a clear indication of large deformation on the embankments with peak amplitude of \(>\) 50 mm/year in 2003–2010, increasing to \(>\!\!80\)  mm/year in 2012–2013 in the line of sight (LOS) direction from ground to the satellite. 2D decomposition of InSAR observations from Envisat and ALOS satellites that overlap in the years 2007–2010 shows that the rate of the vertical settlement and horizontal motion is not uniform along the embankments; Both eastern and western embankments show significant vertical motion, while horizontal motion plays a more significant role in eastern embankment than western embankment. The InSAR results are then used to simulate deformation using FEM at two cross-sections at the distance of 4 and 9 km from the most western edge of the LUC for which detailed stratigraphy data are available. Results suggest that consolidation due to dissipation of excess pore pressure in embankments can satisfactory predict settlement of the LUC embankments. Our numerical modeling indicates that nearly half of the consolidation since the construction time of the causeway 30 years ago has been done.  相似文献   
154.
River embankments failure due to severe flooding is an extremely complex phenomena triggering permanent or temporary modification to the river morphology, river flow and sediment movement. Reliable and automatic prediction of these movements is crucial to properly identify the protective measures for residents living within the inundation flood zones. In this regard, BISHOP, a decision tool to automatically predict, at multiple river cross-sections, the slope failure circle with the minimum safety factor has been developed. In this paper, the computer tool BISHOP, named after the simplified Bishop method, is presented. Its applications have proven to be highly efficient in real case studies, where the stability of multiple slope profiles, at different river cross-sections, must be analyzed to establish spatial and temporal evolution of the river banks failures. The integration of the proposed methodology within a comprehensive flow hydrodynamic, sediment transport and landslide calculation has particularly enhanced the evaluation of the flood-risk zone during major flooding. Typical results demonstrating the effectiveness of the developed methodology are demonstrated during the analysis of the evolution of a river reach downstream of a dam a dam break scenario.  相似文献   
155.
A recently developed Bayesian interpolation method (BI) and its application to safety assessment of a flood defense structure are described in this paper. We use a one-dimensional Bayesian Monte Carlo method (BMC) that has been proposed in (Rajabalinejad 2009) to develop a weighted logical dependence between neighboring points. The concept of global uncertainty is adequately explained and different uncertainty association models (UAMs) are presented for linking the local and global uncertainty. Based on the global uncertainty, a simplified approach is introduced. By applying the global uncertainty, we apply the Guassian error estimation to general models and the Generalized Beta (GB) distribution to monotonic models. Our main objective in this research is to simplify the newly developed BMC method and demonstrate that it can dramatically improve the simulation efficiency by using prior information from outcomes of the preceding simulations. We provide theory and numerical algorithms for the BI method geared to multi-dimensional problems, integrate it with a probabilistic finite element model, and apply the coupled models to the reliability assessment of a flood defense for the 17th Street Flood Wall system in New Orleans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号