首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   7篇
  国内免费   2篇
大气科学   16篇
地球物理   31篇
地质学   59篇
海洋学   14篇
天文学   5篇
综合类   1篇
自然地理   9篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   7篇
  2017年   2篇
  2016年   6篇
  2015年   9篇
  2014年   8篇
  2013年   20篇
  2012年   4篇
  2011年   6篇
  2010年   13篇
  2009年   5篇
  2008年   7篇
  2007年   5篇
  2006年   6篇
  2005年   7篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1993年   2篇
  1988年   1篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
61.
The azimuth of imbrication of minimum magnetic susceptibility axes in the youngest loess from Ukraine defines prevailing wind directions during aeolian sedimentation. It changes along the studied sections. These changes can be directly correlated with the fluctuations of the Fennoscandian Ice Sheet. The northern and northeastern winds noted in the loess succession separated by a period when southwestern to southeastern winds were predominant may be correlated with two main phases of ice‐sheet advance during the Last Glacial Maximum. The ice‐sheet advances towards the areas of loess deposition generated katabatic winds that influenced aeolian sedimentation in the periglacial zone. A period of relatively stable wind directions during a younger phase of the Last Glacial Maximum was interrupted by periods with more chaotic wind regime most probably caused by fluctuations of the Fennoscandian Ice Sheet during its retreat from the peri‐Baltic part of Europe. These intervals occur where initial soils developed. The distribution of anisotropy of magnetic susceptibility axes defined along the periglacial loess sections from central and eastern Europe can serve to constrain fluctuations of the Fennoscandian Ice Sheet.  相似文献   
62.
Antarctic Intermediate Water (AAIW) formation constitutes an important mechanism for the export of macronutrients out of the Southern Ocean that fuels primary production in low latitudes. We used quality-controlled gridded data from five hydrographic cruises between 1990 and 2014 to examine decadal variability in nutrients and dissolved inorganic carbon (DIC) in the AAIW (neutral density range 27 < γ n <? 27.4) along the Prime Meridian. Significant positive trends were found in DIC (0.70 ± 0.4 μmol kg??1 year??1) and nitrate (0.08 ± 0.06 μ mol kg??1 year??1) along with decreasing trends in temperature (??0.015 ± 0.01°C year??1) and salinity (??0.003 ± 0.002 year??1) in the AAIW. Accompanying this is an increase in apparent oxygen utilization (AOU, 0.16 ± 0.07 μ mol kg??1 year??1). We estimated that 75% of the DIC change has an anthropogenic origin. The remainder of the trends support a scenario of a strengthening of the upper-ocean overturning circulation in the Atlantic sector of the Southern Ocean in response to the positive trend in the Southern Annular Mode. A decrease in net primary productivity (more nutrients unutilized) in the source waters of the AAIW could have contributed as well but cannot fully explain all observed changes.  相似文献   
63.
D. Markovic  M. Koch 《水文研究》2015,29(7):1806-1816
Hydrological processes commonly exhibit long‐term persistence, also known as the ‘Hurst phenomenon’. Here, we examine long‐term precipitation and streamflow time series from the Elbe River Basin to quantify differences in the spectral properties and in the Hurst parameter estimates () of the individual hydrological cycle components. Precipitation‐runoff modelling is performed for the Elbe River sub‐catchment Striegis using the Soil and Water Assessment Tool (SWAT). For 38 daily 50 years long streamflow time series from the Elbe River Basin, baseflow separation and spectral analysis is performed. The results show a spectral shift towards low‐frequency scales (>2 years) from precipitation to baseflow, with a parallel increase of from 0.52 (precipitation) to 0.65 (baseflow). The SWAT model is able to reproduce both, the main low‐frequency mode (≈7 yr.) and the (0.62) of the observed Striegis River flow time series. The baseflow appears to be the main component which shapes the low‐frequency response and of streamflow in the Elbe River Basin to the input precipitation. This conclusion is further confirmed through PMWIN‐MODFLOW groundwater modelling of a hypothetic phreatic stream‐connected aquifer system that consists of various soils (sand, loamy sand and silt). A power shift towards lower frequencies and an increase of for the hydraulic heads is obtained, as the aquifer's lateral dimensions increase and its hydraulic conductivity decreases. The average of the groundwater heads is 0.80, 0.90 and 1.0 for sand, loamy sand and silt aquifers, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
64.
The Viking Orbiters imaged early morning, long, linear wave clouds along the flanks of the Tharsis volcanoes during late northern spring and early summer. These clouds are believed to be a product of either an atmospheric bore wave or a hydraulic jump generated by nightly katabatic winds. The Mars Regional Atmospheric Modeling System was used to study the interaction of the katabatic flows with the surrounding atmosphere to determine what mechanism is responsible for the clouds. Simulations at Ls=90°, 100°, 142°, 180°, 270°, and 358° were conducted focusing on the eastern flank of Olympus Mons. Model results compare well with Viking observations and closely approximate theoretical treatments of atmospheric bores. Strong downslope flows are simulated during the night, with a bore wave forming on and behind a well-defined katabatic front. The observed seasonality of the clouds was reproduced in the simulations; the bore was deeper and faster during northern summer and weakest during the winter. When the bore was strong, it was undular in form, and generated vertically propagating gravity waves in the atmosphere above. During the winter, the atmospheric structure was such that any gravity waves generated damped with height. Less atmospheric water vapor abundance during northern winter, as compared to the summer, is also a factor in the seasonality of the wave clouds. This study concludes that bore waves are the most likely mechanism for the generation of the observed linear wave clouds.  相似文献   
65.
The Baqueró Group holds a rich fossil flora including macrofloristic and palynological remains that characterize the Early Cretaceous vegetation of Argentina. The age of the upper part of the Group, known as Punta del Barco Formation, has been a topic of several discussions in the past. The type locality of this stratigraphic unit exposes fossiliferous tuffs together with muddy tuffs and tuffaceous sandstones beds. However, there have been no reliable age constraints for the fossil assemblages. 206Pb/238U analyses of zircon crystals yielded an age of 114.67 ± 0.18 Ma. This age control makes possible an improved analysis and comparison of the floras in the southern region.  相似文献   
66.
Fe(II)-Fe(III) redox behavior has been studied in the presence of catechol under different pH, ionic media, and organic compound concentrations. Catechol undergoes oxidation in oxic conditions producing semiquinone and quinone and reduces Fe(III) in natural solutions including seawater (SW). It is a pH-dependent process. Under darkness, the amount of Fe(II) generated is smaller and is related to less oxidation of catechol. The Fe(II) regeneration is higher at lower pH values both in SW with log k = 1.86 (M−1 s−1) at pH 7.3 and 0.26 (M−1 s−1) at pH 8.0, and in NaCl solutions with log k of 1.54 (M−1 s−1) at pH 7.3 and 0.57 (M−1 s−1) at pH 8.0. At higher pH values, rate constants are higher in NaCl solutions than in SW. This is due to the complexation of Mg(II) present in the media with the semiquinone that inhibits the formation of a second Fe(II) through the reaction of this intermediate with other center Fe(Cat)+.  相似文献   
67.
The International Union of Quaternary Research (INQUA) organized the study and consideration of the Quaternary Period (the last 2.6 million years in Earth’s history) via a set of commissions, sub-commissions, working groups, projects and programmes. One of the most successful and best records was the Loess Commission (LC) which functioned assub-commission and then commission from 1961 to 2003, resulting in 40 years of useful activity. The history of the LC can be divided into three phases: 1, from 1961–1977 when the President was Julius Fink; 2, from 1977–1991, with President Marton Pecsi; 3, from 1991–2003 with Presidents An Zhi-Sheng and Ian Smalley. Fink, from Vienna, and Pecsi, from Budapest, gave the LC a distinctly Central European aspect. The nature of loess in Central Europe influenced the nature of the LC but the settings for phases 1 and 2 were quite distinct. Phase 1 was a small scale academic operation, carried out in German. As phase 2 began in 1977 the scope expanded and Central Europe became a base for worldwide loess studies. where the LC language changed to English. Phase 2 was run from a National Geographical Institute and demonstrated a different approach to loess research, although the basic programmes of continent-wide mapping and stratigraphy remained the same. The Commission benefited from this change of style and emphasis. In phase 3 the administration moved away from Central Europe but the Finkian ethos remained solid.  相似文献   
68.
69.
The Central European Basin System (CEBS) is composed of a series of subbasins, the largest of which are (1) the Norwegian–Danish Basin (2), the North German Basin extending westward into the southern North Sea and (3) the Polish Basin. A 3D structural model of the CEBS is presented, which integrates the thickness of the crust below the Permian and five layers representing the Permian–Cenozoic sediments. Structural interpretations derived from the 3D model and from backstripping are discussed with respect to published seismic data. The analysis of structural relationships across the CEBS suggests that basin evolution was controlled to a large degree by the presence of major zones of crustal weakness. The NW–SE-striking Tornquist Zone, the Ringkøbing-Fyn High (RFH) and the Elbe Fault System (EFS) provided the borders for the large Permo–Mesozoic basins, which developed along axes parallel to these fault systems. The Tornquist Zone, as the most prominent of these zones, limited the area affected by Permian–Cenozoic subsidence to the north. Movements along the Tornquist Zone, the margins of the Ringkøbing-Fyn High and the Elbe Fault System could have influenced basin initiation. Thermal destabilization of the crust between the major NW–SE-striking fault systems, however, was a second factor controlling the initiation and subsidence in the Permo–Mesozoic basins. In the Triassic, a change of the regional stress field caused the formation of large grabens (Central Graben, Horn Graben, Glückstadt Graben) perpendicular to the Tornquist Zone, the Ringkøbing-Fyn High and the Elbe Fault System. The resulting subsidence pattern can be explained by a superposition of declining thermal subsidence and regional extension. This led to a dissection of the Ringkøbing-Fyn High, resulting in offsets of the older NW–SE elements by the younger N–S elements. In the Late Cretaceous, the NW–SE elements were reactivated during compression, the direction of which was such that it did not favour inversion of N–S elements. A distinct change in subsidence controlling factors led to a shift of the main depocentre to the central North Sea in the Cenozoic. In this last phase, N–S-striking structures in the North Sea and NW–SE-striking structures in The Netherlands are reactivated as subsidence areas which are in line with the direction of present maximum compression. The Moho topography below the CEBS varies over a wide range. Below the N–S-trending Cenozoic depocentre in the North Sea, the crust is only 20 km thick compared to about 30 km below the largest part of the CEBS. The crust is up to 40 km thick below the Ringkøbing-Fyn High and up to 45 km along the Teisseyre–Tornquist Zone. Crustal thickness gradients are present across the Tornquist Zone and across the borders of the Ringkøbing-Fyn High but not across the Elbe Fault System. The N–S-striking structural elements are generally underlain by a thinner crust than the other parts of the CEBS.The main fault systems in the Permian to Cenozoic sediment fill of the CEBS are located above zones in the deeper crust across which a change in geophysical properties as P-wave velocities or gravimetric response is observed. This indicates that these structures served as templates in the crustal memory and that the prerift configuration of the continental crust is a major controlling factor for the subsequent basin evolution.  相似文献   
70.
<正>A new genus Microelectrona gen.nov.and species Microelectrona cladara sp.nov.of the extinct tribe Protodikraneurini of the leafhoppers(Cicadeilidae:Typhlocybinae) from the Eocene Baltic amber is described. The piece of amber containing leafhopper inclusion is broken,unveiling some of the morphological structures,and enabling their studies using scanning electron microscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号