首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   1篇
  国内免费   1篇
测绘学   8篇
大气科学   2篇
地球物理   18篇
地质学   31篇
海洋学   17篇
天文学   15篇
自然地理   22篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2014年   6篇
  2013年   10篇
  2012年   2篇
  2011年   5篇
  2010年   8篇
  2009年   5篇
  2008年   7篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   6篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1987年   2篇
  1984年   3篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
  1961年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
61.
Mid-Proterozoic calc-alkaline granitoids from southern Norway, and their extrusive equivalents have been dated by LAM-ICPMS U–Pb on zircons to ages ranging from 1.61 to 1.52 Ga; there are no systematic age differences across potential Precambrian terrane boundaries in the region. U–Pb and Lu–Hf data on detrital zircons from metasedimentary gneisses belonging to the arc association show that these were mainly derived from ca. 1.6 Ga arc-related rocks. They also contain a minor but significant fraction of material derived from (at least) two distinct older (1.7–1.8 Ga) sources; one has a clear continental signature, and the other represents juvenile, depleted mantle-derived material. The former component resided in granitoids of the Transscandinavian Igneous Belt, the other in mafic rocks related to these granites or to the earliest, subduction-related magmatism in the region. Together with published data from south Norway and southwest Sweden, these findings suggest that the western margin of the Baltic Shield was the site of continuous magmatic arc evolution from at least ca 1.66 to 1.50 Ga. Most of the calc-alkaline metaigneous rocks formed in this period show major- and trace-element characteristics of rocks formed in a normal continental margin magmatic arc. The exceptions are the Stora Le-Marstrand belt in Sweden and the Kongsberg complex of Norway, which have an arc-tholeiitic chemical affinity. The new data from south Norway do not justify a suggestion that the crust on the west side of the Oslo Rift had an early to mid-Proterozoic history different from the crust to the east. Instead, they indicate that the different parts of south Norway and southwest Sweden were situated at the margin of the Baltic Shield throughout the mid-Proterozoic. Changes from arc tholeitic to calc-alkaline magmatism reflect changes with time in the subduction zone system, or lateral differences in subduction zone geometry. The NW American Cordillera may be a useful present-day analogue for the tectonomagmatic evolution of the mid-Proterozoic Baltic margin.  相似文献   
62.
63.
An ion-microprobe (SIMS) U-Pb zircon dating study on four samples of Precambrian metasediments from the high-grade Bamble Sector, southern Norway, gives the first information on the timing of discrete crust-forming events in the SW part of the Baltic Shield. Recent Nd and Pb studies have indicated that the sources of the clastic metasediments in this area have crustal histories extending back to 1.7 to 2.1 Ga, although there is no record of rocks older than 1.6 Ga in southern Norway. The analysed metasediments are from a sequence of intercalated, centimetre to 10-metre wide units of quartzites, semi-metapelites, metapelites and mafic granulites. The zircons can be grouped in two morphological populations: (1) long prismatic; (2) rounded, often flattened. The BSE images reveal that both populations consist of oscillatory zoned, rounded and corroded cores (detrital grains of magmatic origin), surrounded by homogeneous rims (metamorphic overgrowths). The detrital zircons have 207Pb/206Pb ages between 1367 and 1939 Ma, with frequency maxima in the range 1.85 to 1.70 Ga and 1.60 to 1.50 Ga. There is no correlation between crystal habit and age of the zircon. One resorbed, inner zircon core in a detrital grain is strongly discordant and gives a composite inner core-magmatic outer core 207Pb/206Pb age of 2383 Ma. Two discrete, unzoned zircons have 207Pb/206Pb ages of 1122 and 1133 Ma, representing zircon growth during the Sveconorwegian high-grade metamorphism. Also the μm wide overgrowths, embayments in the detrital cores and apparent “inner cores” which represent secondary metamorphic zircon growth in deep embayments in detrital grains, are of Sveconorwegian age. The composite-detrital-metamorphic zircon analyses give generally discordant 206Pb/238U versus 207Pb/235U ratios and maximum 207Pb/206Pb ages of 1438 Ma. These data demonstrate the existence of a protocrust of 1.7 to 2.0 Ga in the southwestern part of the Baltic Shield, implying a break in the overall westward younging trend of the Precambrian crust, inferred from the southeastern part of the Baltic Shield. Received: 8 April 1997 / Accepted: 14 July 1997  相似文献   
64.
Knudsen 《Journal of Geodesy》1987,61(2):145-160
The estimation of a local empirical covariance function from a set of observations was done in the Faeroe Islands region. Gravity and adjusted Seasat altimeter data relative to theGPM2 spherical harmonic approximation were selected holding one value in celles of1/8°×1/4° covering the area. In order to center the observations they were transformed into a locally best fitting reference system having a semimajor axis1.8 m smaller than the one ofGRS80. The variance of the data then was273 mgal 2 and0.12 m 2 respectively. In the calculations both the space domain method and the frequency domain method were used. Using the space domain method the auto-covariances for gravity anomalies and geoid heights and the cross-covariances between the quantities were estimated. Furthermore an empirical error estimate was derived. Using the frequency domain method the auto-covariances of gridded gravity anomalies was estimated. The gridding procedure was found to have a considerable smoothing effect, but a deconvolution made the results of the two methods to agree. The local covariance function model was represented by a Tscherning/Rapp degree-variance model,A/((i−1)(i−2)(i+24))(R B /R E )2i+2, and the error degree-variances related to the potential coefficient setGPM2. This covariance function was adjusted to fit the empirical values using an iterative least squares inversion procedure adjusting the factor A, the depth to the Bjerhammar sphere(R E R B ), and a scale factor associated with the error degree-variances. Three different combinations of the empirical covariance values were used. The scale factor was not well determined from the gravity anomaly covariance values, and the depth to the Bjerhammar sphere was not well determined from geoid height covariance values only. A combination of the two types of auto-covariance values resulted in a well determined model.  相似文献   
65.
66.
67.
The hydrodynamic mechanisms responsible for the genesis and facies variability of shallow-marine sandstone storm deposits (tempestites) have been intensely debated, with particular focus on hummocky cross-stratification. Despite being ubiquitously utilized as diagnostic elements of high-energy storm events, the full formative process spectrum of tempestites and hummocky cross-stratification is still to be determined. In this study, detailed sedimentological investigations of more than 950 discrete tempestites within the Lower Cretaceous Rurikfjellet Formation on Spitsbergen, Svalbard, shed new light on the formation and environmental significance of hummocky cross-stratification, and provide a reference for evaluation of tempestite facies models. Three generic types of tempestites are recognized, representing deposition from: (i) relatively steady and (ii) highly unsteady storm-wave-generated oscillatory flows or oscillatory-dominated combined-flows; and (iii) various storm-wave-modified hyperpycnal flows (including waxing–waning flows) generated directly from plunging rivers. A low-gradient ramp physiography enhanced both distally progressive deceleration of the hyperpycnal flows and the spatial extent and relative magnitude of wave-added turbulence. Sandstone beds display a wide range of simple and complex configurations of hummocky cross-stratification. Features include ripple cross-lamination and ‘compound’ stratification, soft-sediment deformation structures, local shifts to quasi-planar lamination, double draping, metre-scale channelized bed architectures, gravel-rich intervals, inverse-to-normal grading, and vertical alternation of sedimentary structures. A polygenetic model is presented to account for the various configurations of hummocky cross-stratification that may commonly be produced during storms by wave oscillations, hyperpycnal flows and downwelling flows. Inherent storm-wave unsteadiness probably facilitates the generation of a wide range of hummocky cross-stratification configurations due to: (i) changes in near-bed oscillatory shear stresses related to passing wave groups or tidal water-level variations; (ii) multidirectional combined-flows related to polymodal and time-varying orientations of wave oscillations; and (iii) syndepositional liquefaction related to cyclic wave stress. Previous proximal–distal tempestite facies models may only be applicable to relatively high-gradient shelves, and new models are necessary for low-gradient settings.  相似文献   
68.
High‐resolution gravity cores and box cores from the North Icelandic shelf have been studied for palaeoceanographic history based on lithological and biostratigraphical foraminiferal data. Results from two outer shelf cores covering the last 13.6 k 14C yr BP are presented in this paper. The sediments accumulated in north–south trending basins on each side of the Kolbeinsey Ridge at water depths of ca. 400 m. Sedimentation rates up to 1.5 m kyr−1 are observed during the Late‐glacial and Holocene. The Vedde and Saksunarvatn tephras are present in the cores as well as the Hekla 1104. A new tephra, KOL‐GS‐2, has been identified and dated to 13.4 k 14C yr BP, and another tephra, geochemically identical to the Borrobol Tephra, has been found at the same level. At present, the oceanographic Polar Front is located on the North Icelandic shelf, which experiences sharp oceanographic surface boundaries between the cold East Icelandic Current and the warmer Irminger Current. Past changes in sedimentological and biological processes in the study area are assumed to be related to fluctuations of the Polar Front. The area was deglaciated before ca. 14 kyr BP, but there is evidence of ice rafting up to the end of the GS‐1 (Greenland Stadial 1, Younger Dryas) period, increasing again towards the end of the Holocene. Foraminiferal studies show a relatively strong GS‐2 (pre‐13 kyr BP) palaeo‐Irminger Current, followed by severe cooling and then by unstable conditions during the remainder of the GI‐1 (Greenland Interstadial 1, Bølling–Allerød) and GS‐1 (Younger Dryas). Another cooling event occurred during the Preboreal before the Holocene current system was established at about 9 kyr BP. After a climatic optimum between 9 and 6 kyr BP the climate began to deteriorate and fluctuate. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
69.
70.
A chemostratigraphic study of Upper Jurassic sandstones in the northern Danish Central Graben has been undertaken within the framework of a well-defined stratigraphic/sedimentological model based particularly on cored well sections. Two reservoir sandstone units are recognised, the transgressive marginal marine to shoreface sandstone of the Gert Member and the regressive to transgressive shoreface sandstone of the Ravn Member. Both members belong to the Heno Formation, which is equivalent to the Fulmar Formation (UK) and the Ula Formation (Norway).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号