首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   17篇
  国内免费   3篇
测绘学   5篇
大气科学   11篇
地球物理   57篇
地质学   63篇
海洋学   16篇
天文学   13篇
综合类   1篇
自然地理   26篇
  2023年   1篇
  2021年   6篇
  2020年   9篇
  2019年   12篇
  2018年   5篇
  2017年   5篇
  2016年   10篇
  2015年   6篇
  2014年   7篇
  2013年   9篇
  2012年   7篇
  2011年   12篇
  2010年   17篇
  2009年   16篇
  2008年   9篇
  2007年   5篇
  2006年   9篇
  2005年   9篇
  2004年   4篇
  2003年   6篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   5篇
  1993年   1篇
  1991年   1篇
  1982年   1篇
  1978年   2篇
  1975年   1篇
排序方式: 共有192条查询结果,搜索用时 312 毫秒
91.
Deltas on planet Mars record past climate, but so far a wide range of hypotheses for their formation have been proposed. The objective of this paper is to understand martian fan deltas, their formative conditions, evolution and formative duration, and implications for the past climate. As an introduction to Mars, physiographic provinces are described and unambiguous proof is listed for the presence of flowing water in the past, such as certain minerals, groundwater, catastrophic outflow channels, alluvial fans and fan deltas, distributary networks and glaciers. The climate history of Mars differs from that of Earth by having had much drier conditions than on Earth, extreme intermittency and extreme events, most of them billions of years ago. Tens of fan deltas, unchannelized fan deltas and stepped fans have been found in impact crater and other lakes. The stepped fans were likely formed by backstepping under fast rising lake levels and have no known terrestrial equivalent. The fan deltas were formed once the lake overflowed. Alluvial fans are much more numerous and formed with less water. The delta studies illustrate how major challenges of martian morphology and reconstruction of past conditions can be taken up most effectively by combinations of the available high‐resolution images and digital elevation models, terrestrial analogues, laboratory experiments and physics‐based models gleaned from geomorphology. To resolve formative mechanisms and time scale of martian fans and deltas, morphological distinctions between dense debris flows and dilute fluvial flows must be identified for both source and sink areas. Furthermore, the properties of the martian surface material are very poorly constrained but can be explored by modelling various mass wasting, fluvial and glacial phenomena and hydrology, and by experimentation with slightly cohesive sediment. Finally, the highly debated role of groundwater sapping in valley and delta formation on Mars should be explored experimentally. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
92.
Meteorological measurements from Lerwick Observatory, Shetland (60°09′N, 1°08′W), are compared with short-term changes in Climax neutron counter cosmic ray measurements. For transient neutron count reductions of 10–12%, broken cloud becomes at least 10% more frequent on the neutron minimum day, above expectations from sampling. This suggests a rapid timescale (~1 day) cloud response to cosmic ray changes. However, larger or smaller neutron count reductions do not coincide with cloud responses exceeding sampling effects. Larger events are too rare to provide a robust signal above the sampling noise. Smaller events are too weak to be observed above the natural variability.  相似文献   
93.
The frequency and timing of Holocene paleofloods in the hilly terrain of New Hampshire and Maine are identified using 14C and high-resolution (cm-by-cm) particle size analysis of sediment cores taken from six post-glacial lakes (~0.1–1.4 km2). A total of nine sediment cores (4.5–6 m long) were taken near the base of stream delta foreslopes. End-member modeling of the particle-size frequency distributions from each core produces 3–5 representative end member distributions, or end members (EMs). Concurrent increases in mean and median particle size, and in the relative abundance of the coarsest EM(s), indicate increased transport capacity of inflowing tributaries, resulting from rainstorms. In all 9 cores, particle size data show clear signs of episodic, high-energy sediment transport events where proxy measurements such as loss-on-ignition and magnetic susceptibility do not, demonstrating the sensitivity of particle size analysis in paleostorm investigations made using lake sediment cores. Floods caused by storms in this region peaked around 1.4, 2.1, 3.0, 3.9, 6.8, 8.2, and 11.5 ka cal BP, and presently appear to be increasing in frequency. Periods of storminess in New Hampshire and Maine correlate well with other records of precipitation and climate in the northeastern United States during the Holocene, further supporting modern records which show tropical air masses as a primary driver of extreme precipitation events in New England (Ludlum 1996; Konrad 2001; Sisson and Gyakum 2004).  相似文献   
94.
The characteristics of ebb-tidal deltas are determined by the local hydrodynamics. The latter depend, among others, on the geometry of the adjacent back-barrier basin. Therefore, interventions in the back-barrier basin can affect the geometry of ebb-tidal deltas. In this study, the effect of the length of the back-barrier basin on the sand volume and spatial symmetry of ebb-tidal deltas is quantified with the use of a numerical model. It is found that the length of the back-barrier basin affects the tidal prism, the amplitude and phase of the primary tide and its overtides, and the residual currents that, together, determine the sand volume of the ebb-tidal delta. In particular, it is found that no unique relationship exists between tidal prism and sand volume of an ebb-tidal delta. The spatial symmetry of ebb-tidal deltas is also found to be affected by the length of the back-barrier basin. This is because the basin length determines the phase difference between alongshore and cross-shore tidal currents. The numerical model results give a possible explanation for the changes that are observed in the geometry of the ebb-tidal deltas that are located seaward of the Texel Inlet and Vlie Inlet after the closure of the Zuiderzee.  相似文献   
95.
Morphodynamics in sand‐bed braided rivers are associated with simultaneous evolution of mid‐channel bars and channels on the braidplain. Bifurcations around mid‐channel bars are key elements that divide discharge and sediment. This, in turn, may control the evolution of connected branches, with effects propagating to both upstream and downstream bifurcations. Recent works on bifurcation stability and development hypothesize major roles of secondary flow and gradient advantage. However, this has not been tested for channel networks within a fully developed dynamic braided river. A reason for this is a lack of detailed measurements with sufficient temporal and spatial length, covering multiple bifurcations. Therefore we used a physics‐based numerical model to generate a dataset of bathymetry, flow and sediment transport of an 80 km river reach with self‐formed braid bars and bifurcations. The study shows that bar dissection due to local transverse water surface gradients is the dominant bifurcation initiation mechanism, although conversion of unit bars into compound bars dominates in the initial stage of a braided river. Several bifurcation closure mechanisms are equally important. Furthermore, the study showed that nodal point relations for bifurcations are unable to predict short‐term bifurcation evolution in a braided river. This is explained by occurrence of nonlinear processes and non‐uniformity within the branches, in particular migrating bars and larger‐scale backwater‐effects, which are not included in the nodal point relations. Planform morphology, on the other hand, has predictive capacity: bifurcation angle asymmetry and bar‐tail limb shape are indicators for near‐future bifurcation evolution. Remote sensing data has predictive value, for which we developed a conceptual model for interactions between bars, bifurcations and channels in the network. We conducted a preliminary test of the conceptual model on satellite images of the Brahmaputra. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
96.
Most of the largest rivers on Earth have multiple active channels connected at bifurcations and confluences. At present a method to describe a channel network pattern and changes in the network beyond the simplistic braiding index is unavailable. Our objectives are to test a network approach to understand the character, stability and evolution of a multi‐channel river pattern under natural discharge conditions. We developed a semi‐automatic method to derive a chain‐like directional network from images that represent the multi‐channel river and to connect individual network elements through time. The Jamuna River was taken as an example with a series of Landsat TM and ETM+ images taken at irregular intervals between 1999 and 2004. We quantified the overall importance of individual channels in the entire network using a centrality property. Centrality showed that three reaches can be distinguished along the Jamuna with a different network character: the middle reach has dominantly one important channel, while upstream and downstream there are about two important channels. Temporally, relatively few channels changed dramatically in both low‐flow and high‐flow periods despite the increase of braiding index during a flood. Based on the centrality we calculated a weighted braiding index that represents the number of important channels in the network, which is about two in the Jamuna River and which is larger immediately after floods. We conclude that the network measure centrality provides a novel characterization of river channel networks, highlighting properties and tendencies that have morphological significance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
97.
98.
Scour holes often form in shallow flows over sand on the beach and in morphodynamic scale experiments of river reaches, deltas and estuarine landscapes. The scour holes are on average 2 cm deep and 5 cm long, regardless of the flow depth and appear to occur under similar conditions as current ripples: at low boundary Reynolds numbers, in fine sand and under relatively low sediment mobility. In landscape experiments, where the flow is only about 1 cm deep, such scours may be unrealistically large and have unnatural effects on channel formation, bar pattern and stratigraphy. This study tests the hypotheses that both scours and ripples occur in the same conditions and that the roughness added by sediment saltation explains the difference between the ripple–dune transition and the clear‐water hydraulic smooth to rough transition. About 500 experiments are presented with a range of sediment types, sediment mobility and obstructions to provoke scour holes, or removal thereof to assess scour hole persistence. Most experiments confirm that ripples and scour holes both form in the ripple stability field in two different bedform stability diagrams. The experiments also show that scours can be provoked by perturbations even below generalized sediment motion. Moreover, the hydraulic smooth to rough transition modified with saltation roughness depending on sediment mobility was similar in magnitude and in slope to ripple–dune transitions. Given uncertainties in saltation relations, the smooth to rough transitions modified for movable beds are empirically equivalent to the ripple–dune transitions. These results are in agreement with the hypothesis that scours form by turbulence caused by localized flow separation under low boundary Reynolds numbers, and do not form under generalized flow separation over coarser particles and intense sediment saltation. Furthermore, this suggests that ripples are a superposition of two independent forms: periodic bedforms occurring in smooth and rough conditions plus aperiodic scours occurring only in hydraulic smooth conditions.  相似文献   
99.
Anastomosing rivers, systems of multiple interconnected channels that enclose floodbasins, constitute a major category of rivers for which various sedimentary facies models have been developed. While the sedimentary products of anastomosing rivers are relatively well‐known, their genesis is still debated. A rapidly growing number of ancient alluvial successions being interpreted as of anastomosing river origin, including important hydrocarbon reservoirs, urge the development of robust models for the genesis of anastomosis, to facilitate better interpretation of ancient depositional settings and controls. The upper Columbia River, British Columbia, Canada, is the most‐studied anastomosing river and has played a key role in the development of an anastomosing river facies model. Two hypotheses for the origin of upper Columbia River anastomosis include the following: (i) downstream control by aggrading cross‐valley alluvial fans; and (ii) upstream control by excessive bedload input from tributaries. Both upstream and downstream control may force aggradation and avulsions in the upper Columbia River. In order to test both hypotheses, long‐term (millennia‐scale) floodplain sedimentation rates and avulsion frequencies are calculated using 14C‐dated deeply buried organic floodplain material from cross‐valley borehole transects. The results indicate a downstream decrease in floodplain sedimentation rate and avulsion frequency along the anastomosed reach, which is consistent with dominant upstream control by sediment overloading. The data here link recent avulsion activity to increased sediment supply during the Little Ice Age (ca 1100 to 1950 ad ). This link is supported by data showing that sediment supply to the upper Columbia study reach fluctuated in response to Holocene glacial advances and retreats in the hinterland. Upstream control of anastomosis has considerable implications for the reconstruction of the setting of interpreted ancient anastomosing systems. The present research underscores that anastomosing systems typically occur in relatively proximal settings with abundant sediment supplied to low‐gradient floodplains, a situation commonly found in intermontane and foreland basins.  相似文献   
100.
The northwest region of the Iberian Peninsula is home to a unique ecosystem of bogs,which are particularly sensitive to projected climate cha nge.In this context,the rate of carbon(C)accumulation in Chao de Veiga Mol.an intact raised bog,was analysed.Changes in the accumulation rate over the past10 millennia were determined in a peat core of 847 cm in depth,with a high mean rate of peat growth(11 yr cm^-1,0.09 cm yr^-1).An age-depth model was generated from 22 14C dates and fallout radionuclides.Chronological,stratigraphical and physico-chemical data confirmed the existence of a single cycle of peat formation throughout the Holocene and the formation of ombrotrophic peat 9500 years ago.The total mean C content was 50.2%,and over 10 millennia 583 kg C m^-2 accumulated at a mean rate of 35.3 g C m^-2 yr^-1,with a long-term(apparent)rate of carbon accumulation in the catotelm of59.9 g C m^-2 yr^-1.These values are much higher than reported for other Iberian peatlands and are amongst the highest documented for peatlands in the northern hemisphere.The dynamics of C accumulation and other measured parameters reveals important variations throughout the Holocene.They could be associated with the main climatic events described in the northern hemisphere and are highly consistent with models established for northern latitudes.The Chao de Veiga Mol raised bog is unique and of great potential value for carrying out high resolution palaeoenvironmental studies,especially in relation to regional and Iocal modulations in southern Europe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号