首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1149篇
  免费   72篇
  国内免费   22篇
测绘学   26篇
大气科学   79篇
地球物理   349篇
地质学   404篇
海洋学   100篇
天文学   157篇
综合类   6篇
自然地理   122篇
  2024年   2篇
  2023年   4篇
  2022年   4篇
  2021年   24篇
  2020年   31篇
  2019年   22篇
  2018年   40篇
  2017年   33篇
  2016年   50篇
  2015年   50篇
  2014年   41篇
  2013年   72篇
  2012年   65篇
  2011年   70篇
  2010年   60篇
  2009年   76篇
  2008年   79篇
  2007年   70篇
  2006年   58篇
  2005年   51篇
  2004年   50篇
  2003年   34篇
  2002年   31篇
  2001年   19篇
  2000年   15篇
  1999年   12篇
  1998年   18篇
  1997年   13篇
  1996年   15篇
  1995年   11篇
  1994年   9篇
  1993年   11篇
  1992年   12篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   7篇
  1985年   14篇
  1984年   6篇
  1983年   10篇
  1982年   8篇
  1981年   5篇
  1980年   5篇
  1979年   2篇
  1978年   5篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1243条查询结果,搜索用时 703 毫秒
991.
Sediment transport and trapping in the Hudson River estuary   总被引:3,自引:0,他引:3  
The Hudson River estuary has a pronounced turbidity maximum zone, in which rapid, short-term deposition of sediment occurs during and following the spring freshet. Water-column measurements of currents and suspended sediment were performed during the spring of 1999 to determine the rate and mechanisms of sediment transport and trapping in the estuary. The net convergence of sediment in the lower estuary was approximately 300,000 tons, consistent with an estimate based on sediment cores. The major input of sediment from the watershed occurred during the spring freshet, as expected. Unexpected, however, was that an even larger quantity of sediment was transported landward into the estuary during the 3-mo observation period. The landward movement was largely accomplished by tidal pumping (i.e., the correlation between concentration and velocity at tidal frequencies) during spring tides, when the concentrations were 5 to 10 times higher than during neap tides. The landward flux is not consistent with the long-term sediment budget, which requires a seaward flux at the mouth to account for the excess input from the watershed relative to net accumulation. The anomalous, landward transport in 1999 occurred in part because the freshet was relatively weak, and the freshet occurred during neapetides when sediment resuspension was minimal. An extreme freshet occurred during 1998, which may have provided a repository of sediment just seaward of the mouth that re-entered the estuary in 1999. The amplitude of the spring freshet and its timing with respect to the spring-neap cycle cause large interannual variations in estuarine sediment flux. These variations can result in the remobilization of previously deposited sediment, the mass of which may exceed the annual inputs from the watershed.  相似文献   
992.
The pore geometry of texturally equilibrated rocks is controlled by the interfacial energy ratio between grain boundaries and solid–liquid boundaries. Faceting at pore walls, which is a common feature of pore networks in rocks, strongly affects the liquid distribution. We investigated the effects of faceting on the equilibrium pore geometries based on image analysis of several systems with various degrees of faceting and dihedral angles. The degree of faceting was assessed by the F value, which is the ratio of the flat interface length at the pore wall to the length of total interfacial boundary between solid and liquid. The F values tend to increase with increasing liquid volume fraction. Little-faceted systems show relatively homogeneous liquid distribution. Moderately-faceted systems with a higher dihedral angle (∼55°) are characterized by development of large pores surrounded by faceted walls and complementary shrinkage of triple junction tubes, whereas strongly faceted systems with a low dihedral angle show no evidence of shrinking triple junction tubes, although most pores are surrounded by faceted pore walls. The faceted systems tend to produce more facet boundaries at the pore walls due to the difference of interfacial energies between the flat and curved surfaces. In the systems with the same degree of faceting, heterogeneity of liquid distribution tends to decrease with dihedral angle. For faceting systems, the permeability of texturally equilibrated rocks with low liquid fraction would be significantly decreased by the relative reduction of triple junction volumes or by closure of channels along grain edge due to the truncation of facet walls.  相似文献   
993.
Multi-element geochemistry and mineralogy are used to characterize the chemical composition, degree of paleo-weathering, provenance and tectonic settings of the Neogene sedimentary rocks of Borneo Basin of east Malaysia. Sedimentary rocks are classified as extremely weathered sandstones (i.e. wacke, arkose, litharenite, Fe-sandstone and quartz arenite). Wacke, arkose, litharenite and Fe-sandstone are characterized by post-depositional K-metasomatism and zircon enrichment through sediment recycling. Geochemical characteristics suggest a mixed-nature provenance for the sandstones and the variable tectonic settings possibly mirror the complexity of the basin. Enriched Cr in quartz arenite and Fe-sandstone are related to the contribution from ophiolite or fractionation of Cr-bearing minerals.  相似文献   
994.
995.
996.
Peatlands in the Western Boreal Plains act as important water sources in the landscape. Their persistence, despite potential evapotranspiration (PET) often exceeding annual precipitation, is attributed to various water storage mechanisms. One storage element that has been understudied is seasonal ground ice (SGI). This study characterized spring SGI conditions and explored its impacts on available energy, actual evapotranspiration, water table, and near surface soil moisture in a western boreal plains peatland. The majority of SGI melt took place over May 2017. Microtopography had limited impact on melt rates due to wet conditions. SGI melt released 139mm in ice water equivalent (IWE) within the top 30cm of the peat, and weak significant relationships with water table and surface moisture suggest that SGI could be important for maintaining vegetation transpiration during dry springs. Melting SGI decreased available energy causing small reductions in PET (<10mm over the melt period) and appeared to reduce actual evapotranspiration variability but not mean rates, likely due to slow melt rates. This suggests that melting SGI supplies water, allowing evapotranspiration to occur at near potential rates, but reduces the overall rate at which evapotranspiration could occur (PET). The role of SGI may help peatlands in headwater catchments act as a conveyor of water to downstream landscapes during the spring while acting as a supply of water for the peatland. Future work should investigate SGI influences on evapotranspiration under differing peatland types, wet and dry spring conditions, and if the spatial variability of SGI melt leads to spatial variability in evapotranspiration.  相似文献   
997.
Buried palaeo‐valley systems have been identified widely beneath lowland parts of the UK including eastern England, central England, south Wales and the North Sea. In the Midland Valley of Scotland palaeo‐valleys have been identified yet the age and genesis of these enigmatic features remain poorly understood. This study utilizes a digital data set of over 100 000 boreholes that penetrate the full thickness of deposits in the Midland Valley of Scotland. It identified 18 buried palaeo‐valleys, which range from 4 to 36 km in length and 24 to 162 m in depth. Geometric analysis has revealed four distinct valley morphologies, which were formed by different subglacial and subaerial processes. Some palaeo‐valleys cross‐cut each other with the deepest features aligning east–west. These east–west features align with the reconstructed ice‐flow direction under maximum conditions of the Main Late Devensian glaciation. The shallower features appear more aligned to ice‐flow direction during ice‐sheet retreat, and were therefore probably incised under more restricted ice‐sheet configurations. The bedrock lithology influences and enhances the position and depth of palaeo‐valleys in this lowland glacial terrain. Faults have juxtaposed Palaeozoic sedimentary and igneous rocks and the deepest palaeo‐valleys occur immediately down‐ice of knick‐points in the more resistant igneous bedrock. The features are regularly reused and the fills are dominated by glacial fluvial and glacial marine deposits. This suggests that the majority of infilling of the features happened during deglaciation and may be unrelated to the processes that cut them.  相似文献   
998.
The role of the microzooplankton community in regulating phytoplankton biomass was examined across a gradient from a river-dominated estuary to an oceanic-influenced coastal zone. Three stations located along a salinity gradient from the central region of Mobile Bay to 10 km off the coast were sampled from May 1994 to August 1995. Microzooplankton herbivory rates on phytoplankton and microzooplankton excretion of nitrogen derived from phytoplankton were estimated using the dilution technique. Microzooplankton grazing rates (range of station means=0.57–1.10 d−1) and phytoplankton growth rates (0.70–1.62 d−1) both increased across the salinity gradient from the bay station to the offshore station. However, the percent of primary production grazed per day was highest at the bay station (mean=83%) and decreased to a low at the offshore station (mean=64%). Excretion of phytoplankton-derived nitrogen by the microzooplankton was greatest at the bay and bay mouth stations. Excreted nitrogen could potentially supply 39%, 29%, and 20% of phytoplankton nitrogen demand at the bay, bay mouth, and offshore stations, respectively. These results support the idea that herbivorous microzooplankton are important in mediating nitrogen flow to both lower and higher trophic levels. *** DIRECT SUPPORT *** A01BY085 00012  相似文献   
999.
1000.
 During a basaltic fissure eruption heat transfer from the hot magma to the surrounding rock causes a dramatic increase in the magmatic viscosity and solidification at the margins. Both viscosity contrast and solidification can amplify initial variations in the flow rate and lead to localization of the flow along the strike of the fissure. However, for typical parameters, amplification driven by solidification is slower and significantly weaker than amplification driven by viscosity variations. In fact, for the parameters examined, the amplification due to solidification is so weak that its effect is almost insignificant, whereas viscosity variation provides a strong active mechanism for flow localization. Laboratory experiments illustrate viscous localization and suggest that this mechanism is robust. The dependence of viscosity on temperature can cause a small change in the pressure of the magma chamber to lead to a large jump in the flow rate of magma through the fissure. Received: 13 March 1998 / Accepted: 27 September 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号