首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   16篇
  国内免费   3篇
测绘学   5篇
大气科学   8篇
地球物理   101篇
地质学   75篇
海洋学   63篇
天文学   69篇
综合类   2篇
自然地理   24篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2018年   6篇
  2017年   5篇
  2016年   4篇
  2014年   9篇
  2013年   17篇
  2012年   11篇
  2011年   15篇
  2010年   12篇
  2009年   24篇
  2008年   13篇
  2007年   15篇
  2006年   12篇
  2005年   16篇
  2004年   14篇
  2003年   10篇
  2002年   14篇
  2001年   15篇
  2000年   5篇
  1999年   2篇
  1998年   6篇
  1997年   6篇
  1996年   11篇
  1993年   3篇
  1991年   5篇
  1990年   6篇
  1988年   4篇
  1987年   2篇
  1985年   4篇
  1984年   3篇
  1982年   6篇
  1981年   3篇
  1980年   6篇
  1979年   6篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1968年   3篇
  1947年   2篇
  1921年   2篇
  1910年   1篇
  1908年   1篇
  1871年   3篇
排序方式: 共有347条查询结果,搜索用时 62 毫秒
291.
We present results of 161 numerical simulations of impacts into 100-km diameter asteroids, examining debris trajectories to search for the formation of bound satellite systems. Our simulations utilize a 3-dimensional smooth-particle hydrodynamics (SPH) code to model the impact between the colliding asteroids. The outcomes of the SPH models are handed off as the initial conditions for N-body simulations, which follow the trajectories of the ejecta fragments to search for the formation of satellite systems. Our results show that catastrophic and large-scale cratering collisions create numerous fragments whose trajectories can be changed by particle-particle interactions and by the reaccretion of material onto the remaining target body. Some impact debris can enter into orbit around the remaining target body, which is a gravitationally reaccreted rubble pile, to form a SMAshed Target Satellite (SMATS). Numerous smaller fragments escaping the largest remnant may have similar trajectories such that many become bound to one another, forming Escaping Ejecta Binaries (EEBs). Our simulations so far seem to be able to produce satellite systems qualitatively similar to observed systems in the main asteroid belt. We find that impacts of 34-km diameter projectiles striking at 3 km s−1 at impact angles of ∼30° appear to be particularly efficient at producing relatively large satellites around the largest remnant as well as large numbers of modest-size binaries among their escaping ejecta.  相似文献   
292.
We used geographic datasets and field measurements to examine the mechanisms that affect soil carbon (SC) storage for 65 grazed and non-grazed pastures in southern interior grasslands of British Columbia, Canada. Stepwise linear regression (SR) modeling was compared with random forest (RF) modeling. Models produced with SR performed better than those produced using RF models (r2 = 0.56–0.77 AIC = 0.16–0.30 for SR models; r2 = 0.38–0.53 and AIC = 0.18–0.30 for RF models). The factors most significant when predicting SC were elevation, precipitation, and the normalized difference vegetation index (NDVI). NDVI was evaluated at two scales using: (1) the MOD 13Q1 (250 m/16-day resolution) NDVI data product from the moderate resolution imaging spectro-radiometer (MODIS) (NDVIMODIS), and (2) a handheld multispectral radiometer (MSR, 1 m resolution) (NDVIMSR) in order to understand the potential for increasing model accuracy by increasing the spatial resolution of the gridded geographic datasets. When NDVIMSR data were used to predict SC, the percentage of the variance explained by the model was greater than for models that relied on NDVIMODIS data (r2 = 0.68 for SC for non-grazed systems, modeled with SR based on NDVIMODIS data; r2 = 0.77 for SC for non-grazed systems, modeled with SR based on NDVIMSR data). The outcomes of this study provide the groundwork for effective monitoring of SC using geographic datasets to enable a carbon offset program for the ranching industry.  相似文献   
293.
We investigate the organization of the low energy energetic particles (≤1 MeV) by solar wind structures, in particular corotating interaction regions (CIRs) and shocks driven by interplanetary coronal mass ejections, during the declining-to-minimum phase of Solar Cycle 23 from Carrington rotation 1999 to 2088 (January 2003 to October 2009). Because CIR-associated particles are very prominent during the solar minimum, the unusually long solar minimum period of this current cycle provides an opportunity to examine the overall organization of CIR energetic particles for a much longer period than during any other minimum since the dawn of the Space Age. We find that the particle enhancements associated with CIRs this minimum period recurred for many solar rotations, up to 30 at times, due to several high-speed solar wind streams that persisted. However, very few significant CIR-related energetic particle enhancements were observed towards the end of our study period, reflecting the overall weak high-speed streams that occurred at this time. We also contrast the solar minimum observations with the declining phase when a number of solar energetic particle events occurred, producing a mixed particle population. In addition, we compare the observations from this minimum period with those from the previous solar cycle. One of the main differences we find is the shorter recurrence rate of the high-speed solar wind streams (~10 solar rotations) and the related CIR energetic particle enhancements for the Solar Cycle 22 minimum period. Overall our study provides insight into the coexistence of different populations of energetic particles, as well as an overview of the large-scale organization of the energetic particle populations approaching the beginning of Solar Cycle 24.  相似文献   
294.
Laboratory experiments demonstrated that migrant juvenile banded kokopu (Galaxias fasciatus Gray) were more sensitive to suspended sediment (SS) than other native fish species. If juvenile migrants avoid waters made turbid by SS and their recruitment to adult habitats up stream is reduced, then adult abundance may decline in turbid rivers. To test this, we compared the abundance of diadromous native fish between turbid and clear rivers. The duration (% time) for which SS concentrations exceeded 120 mg litre‐1 (a critical level from laboratory experiments) during the migration season (August‐December) was estimated for over 150 New Zealand river sites. Turbid rivers were defined as those where SS concentrations exceeded 120 mg litre‐1 for over 20% of the time and clear rivers as those where SS concentrations exceeded 120 mg litre‐1 for less than 10% of the time. Eight turbid rivers and seven clear ones were identified where sufficient data on SS and native fish populations existed to permit a comparison. The mean occurrence of banded kokopu was reduced by 89.5% in turbid rivers and, although other diadromous fish species were also less common, banded kokopu was most affected. Densities of adult banded kokopu were also significantly lower in optimal stream habitats in three turbid compared with three matched clear rivers. We therefore concluded that the abundance of adult banded kokopu was reduced in turbid rivers and propose that this is because of reduced recruitment of juveniles in turbid rivers.  相似文献   
295.
The effects of riparian manipulation in New Zealand are described for two case studies, one a short‐term study of the effects of the removal of riparian vegetation on fish, and the second, a long‐term study of the effect of re‐establishment of riparian vegetation on fish and benthic macro invertebrates. The first case study was an experiment carried out between November 2001 and May 2002. Overhanging bank vegetation and in‐stream wood were removed from short reaches of a small pastoral stream that had intact riparian margins, resulting in a change in stream structure with the formation of shallow uniform runs rather than pool and riffle structures as in unmodified reaches. The removal of bank cover and consequential instream habitat changes reduced inanga (Galaxias maculatus) densities by a factor of four within months of vegetation removal, showing the importance of instream cover and habitat to inanga. Adult longfin eel (Anguilla dieffenbachii) also became less abundant in the cleared reaches, but elvers (Anguilla spp.) became more abundant. In the second case study, pastoral sections in two small streams draining from native forest catchments were restored in 1995/96 by planting riparian vegetation and preventing stock access. After 10 years, the restoration efforts had more than doubled the numbers of giant kokopu (G. argenteus) and redfin bullies (Gobiomorphus huttoni), slightly increased numbers of banded kokopu (G. fasciatus), and decreased shortfin eel (A. australis) numbers by about 40%. The macroinvertebrate communities changed so that they became more similar to those at upstream native forest reference sites. These two case studies show that riparian margins can influence the composition of the fish and macroinvertebrate communities in small streams through the effects on cover, instream habitat and probably water temperature. Riparian restoration was most effective for the fish species that use cover and pool habitat.  相似文献   
296.
We present a new particle-based (discrete element) numerical method for the simulation of granular dynamics, with application to motions of particles on small solar system body and planetary surfaces. The method employs the parallel N-body tree code pkdgrav to search for collisions and compute particle trajectories. Collisions are treated as instantaneous point-contact events between rigid spheres. Particle confinement is achieved by combining arbitrary combinations of four provided wall primitives, namely infinite plane, finite disk, infinite cylinder, and finite cylinder, and degenerate cases of these. Various wall movements, including translation, oscillation, and rotation, are supported. We provide full derivations of collision prediction and resolution equations for all geometries and motions. Several tests of the method are described, including a model granular “atmosphere” that achieves correct energy equipartition, and a series of tumbler simulations that show the expected transition from tumbling to centrifuging as a function of rotation rate.  相似文献   
297.
We present a numerical method that incorporates particle sticking in simulations using the N-body code pkdgrav to study motions in a local rotating frame, such as a patch of a planetary ring. Particles stick to form non-deformable but breakable aggregates that obey the (Eulerian) equations of rigid-body motion. Applications include local simulations of planetary ring dynamics and planet formation, which typically feature hundreds of thousands or more colliding bodies. Bonding and breaking thresholds are tunable parameters that can approximately mimic, for example, van der Waals forces or interlocking of surface frost layers. The bonding and breaking model does not incorporate a rigorous treatment of internal fracture; rather the method serves as motivation for first-order investigation of how semi-rigid bonding affects the evolution of particle assemblies in high-density environments.We apply the method to Saturn’s A ring, for which laboratory experiments suggest that interpenetration of thin, frost-coated surface layers may lead to weak cohesive bonding. These experiments show that frost-coated icy bodies can bond at the low impact speeds characteristic of the rings. Our investigation is further motivated by recent simulations that suggest a very low coefficient of restitution is needed to explain the amplitude of the azimuthal brightness asymmetry in Saturn’s A ring, and the hypothesis that fine structure in Saturn’s B ring may in part be caused by large-scale cohesion.This work presents the full implementation of our model in pkdgrav, as well as results from initial tests with a limited set of parameters explored. We find a combination of parameters that yields aggregate size distribution and maximum radius values in agreement with Voyager data for ring particles in Saturn’s outer A ring. We also find that the bonding and breaking parameters define two strength regimes in which fragmentation is dominated either by collisions or other stresses, such as tides. We conclude our study with a discussion of future applications of and refinements to our model.  相似文献   
298.
Sea salt aerosol may be an important sink for reactive gaseous mercury (RGM) in the marine boundary layer, reducing ambient RGM concentrations and transferring the mercury (Hg) to the oceans and coastal ecosystems. The goal of this study was to determine the affinity of gaseous mercury for sea salt aerosol (SSA) by conducting adsorption experiments with sea salt-coated sampling denuders. In the first set of experiments, ambient outdoor air was passed through denuders coated with either KCl, as in the widely accepted method to sample RGM, or with NaCl, a primary component of sea salt aerosols. On the one sampling day in which RGM was above the MDL, the NaCl coated denuders removed Hg from the ambient air, equivalent to 87% of the RGM in the air (as determined by KCl denuders). For the second set of experiments HgCl2 generated in the laboratory was passed through denuders coated with KCl and either NaCl or sea salt. The NaCl denuders collected an average of 99 ± 16% of the mercury that the KCl denuders collected. Newly coated sea salt denuders collected 88 ± 17% of the amount of mercury that the KCl denuders collected, but interestingly the sea salt denuders capacity decreased with repeated use. These experiments demonstrate that HgCl2, a major component of RGM has a strong affinity for NaCl and sea salt and is therefore likely to be scavenged by SSA. This study adds to the growing evidence that RGM is scavenged by sea salt aerosols and therefore more quickly deposited to the ocean and coastal environment.  相似文献   
299.
We present simulations of the gravitational collapse of a mono-disperse set of spherical particles for studying shape and spin properties of re-accumulated members of asteroid families. Previous numerical studies have shown that these “gravitational aggregates” exhibit properties similar to granular continuum models described by Mohr-Coulomb theory. A large variety of shapes is thus possible, in principle consistent with the observed population of asteroid shapes.However, it remains to be verified that the re-accumulation following a catastrophic disruption is capable of naturally producing those shapes. Conversely, we find that fluid equilibrium shapes (flattened two-axis spheroids, in particular) are preferentially created by re-accumulation. This is rather unexpected, since the dynamical system used could allow for other stable configurations. Jacobi three-axial ellipsoids can also be created, but this seems to be a less common outcome.The results obtained so far seem to underline the importance of other non-disruptive shaping factors during the lifetime of rubble-pile asteroids.  相似文献   
300.
In this paper, we extend our numerical method for simulating terrestrial planet formation to include dynamical friction from the unresolved debris component. In the previous work, we implemented a rubble pile planetesimal collision model into direct N -body simulations of terrestrial planet formation. The new collision model treated both accretion and erosion of planetesimals but did not include dynamical friction from debris particles smaller than the resolution limit for the simulation. By extending our numerical model to include dynamical friction from the unresolved debris, we can simulate the dynamical effect of debris produced during collisions and can also investigate the effect of initial debris mass on terrestrial planet formation. We find that significant initial debris mass, 10 per cent or more of the total disc mass, changes the mode of planetesimal growth. Specifically, planetesimals in this situation do not go through a runaway growth phase. Instead, they grow concurrently, similar to oligarchic growth. The dynamical friction from the unresolved debris damps the eccentricities of the planetesimals, reducing the mean impact speeds and causing all collisions to result in merging with no mass loss. As a result, there is no debris production. The mass in debris slowly decreases with time. In addition to including the dynamical friction from the unresolved debris, we have implemented particle tracking as a proxy for monitoring compositional mixing. Although there is much less mixing due to collisions and gravitational scattering when dynamical friction of the background debris is included, there is significant inward migration of the largest protoplanets in the most extreme initial conditions (for which the initial mass in unresolved debris is at least equal to the mass in resolved planetesimals).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号