首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   1篇
大气科学   30篇
地球物理   24篇
地质学   2篇
海洋学   1篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1993年   2篇
  1991年   1篇
  1989年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
41.
42.
Statistical methodology is devised to model time series of daily weather at individual locations in the southeastern U.S. conditional on patterns in large-scale atmosphere–ocean circulation. In this way, weather information on an appropriate temporal and spatial scale for input to crop–climate models can be generated, consistent with the relationship between circulation and temporally and/or spatially aggregated climate data (an exercise sometimes termed `downscaling'). The Bermuda High, a subtropical Atlantic circulation feature, is found to have the strongest contemporaneous correlation with seasonal mean temperature and total precipitation in the Southeast (in particular, stronger than for the El Niño–Southern Oscillation phenomenon). Stochastic models for time series of daily minimum and maximum temperature and precipitation amount are fitted conditional on an index indicating the average position of the Bermuda High. For precipitation, a multi-site approach involving a statistical technique known as `borrowing strength' is applied, constraining the relationship between daily precipitation and the Bermuda High index to be spatially the same. In winter (the time of greatest correlation), higher daily maximum and minimum temperature means and higher daily probability of occurrence of precipitation are found when there is an easterly shift in the average position of the Bermuda High. Methods for determining aggregative properties of these stochastic models for daily weather (e.g., variance and spatial correlation of seasonal total precipitation) are also described, so that their performance in representing low frequency variations can be readily evaluated.  相似文献   
43.
44.
A simple model to study the decay of turbulent kinetic energy (TKE) in the convective surface layer is presented. In this model, the TKE is dependent upon two terms, the turbulent dissipation rate and the surface buoyancy fluctuations. The time evolution of the surface sensible heat flux is modelled based on fitting functions of actual measurements from the LITFASS-2003 field campaign. These fitting functions carry an amplitude and a time scale. With this approach, the sensible heat flux can be estimated without having to solve the entire surface energy balance. The period of interest covers two characteristic transition sub-periods involved in the decay of convective boundary-layer turbulence. The first sub-period is the afternoon transition, when the sensible heat flux starts to decrease in response to the reduction in solar radiation. It is typically associated with a decay rate of TKE of approximately t −2 (t is time following the start of the decay) after several convective eddy turnover times. The early evening transition is the second sub-period, typically just before sunset when the surface sensible heat flux becomes negative. This sub-period is characterized by an abrupt decay in TKE associated with the rapid collapse of turbulence. Overall, the results presented show a significant improvement of the modelled TKE decay when compared to the often applied assumption of a sensible heat flux decreasing instantaneously or with a very short forcing time scale. In addition, for atmospheric modelling studies, it is suggested that the afternoon and early evening decay of sensible heat flux be modelled as a complementary error function.  相似文献   
45.
We perform large-eddy simulations of neutral atmospheric boundary-layer flow over a cluster of buildings surrounded by relatively flat terrain. The first investigated question is the effect of the level of building detail that can be included in the numerical model, a topic not yet addressed by any previous study. The simplest representation is found to give similar results to more refined representations for the mean flow, but not for turbulence. The wind direction on the other hand is found to be important for both mean and turbulent parameters. As many suburban areas are characterised by the clustering of buildings and homes into small areas separated by surfaces of lower roughness, we look at the adjustment of the atmospheric surface layer as it flows from the smoother terrain to the built-up area. This transition has unexpected impacts on the flow; mainly, a zone of global backscatter (energy transfer from the turbulent eddies to the mean flow) is found at the upstream edge of the built-up area.  相似文献   
46.
Flow over Hills: A Large-Eddy Simulation of the Bolund Case   总被引:6,自引:6,他引:0  
Simulation of local atmospheric flows around complex topography is important for several applications in wind energy (short-term wind forecasting and turbine siting and control), local weather prediction in mountainous regions and avalanche risk assessment. However, atmospheric simulation around steep mountain topography remains challenging, and a number of different approaches are used to represent such topography in numerical models. The immersed boundary method (IBM) is particularly well-suited for efficient and numerically stable simulation of flow around steep terrain. It uses a homogenous grid and permits a fast meshing of the topography. Here, we use the IBM in conjunction with a large-eddy simulation (LES) and test it against two unique datasets. In the first comparison, the LES is used to reproduce experimental results from a wind-tunnel study of a smooth three-dimensional hill. In the second comparison, we simulate the wind field around the Bolund Hill, Denmark, and make direct comparisons with field measurements. Both cases show good agreement between the simulation results and the experimental data, with the largest disagreement observed near the surface. The source of error is investigated by performing additional simulations with a variety of spatial resolutions and surface roughness properties.  相似文献   
47.
48.
Feeding 9 billion people in 2050 will require sustainable development of all water resources, both surface and subsurface. Yet, little is known about the irrigation potential of hillside shallow aquifers in many highland settings in sub-Saharan Africa that are being considered for providing irrigation water during the dry monsoon phase for smallholder farmers. Information on the shallow groundwater being available in space and time on sloping lands might aid in increasing food production in the dry monsoon phase. Therefore, the research objective of this work is to estimate potential groundwater storage as a potential source of irrigation water for hillside aquifers where lateral subsurface flow is dominant. The research was carried out in the Robit Bata experimental watershed in the Lake Tana basin which is typical of many undulating watersheds in the Ethiopian highlands. Farmers have excavated more than 300 hand dug wells for irrigation. We used 42 of these wells to monitor water table fluctuation from April 16, 2014 to December 2015. Precipitation and runoff data were recorded for the same period. The temporal groundwater storage was estimated using two methods: one based on the water balance with rainfall as input and baseflow and evaporative losses leaving the watershed as outputs; the second based on the observed rise and fall of water levels in wells. We found that maximum groundwater storage was at the end of the rain phase in September after which it decreased linearly until the middle of December due to short groundwater retention times. In the remaining part of the dry season period, only wells located close to faults contained water. Thus, without additional water sources, sloping lands can only be used for significant irrigation inputs during the first 3 months out of the 8 months long dry season.  相似文献   
49.
The similarity solutions of the equations of kinematic flow on a cone-shaped surface, provide a means for checking the numerical models used for converging and diverging flows. These models can be further improved if the initial excess rainfall curve can be described as a power of time. Illustration of this improvement and assessment of numerical models are given for a constant excess rainfall and for excess rainfall proportional to the inverse of the square root of time.  相似文献   
50.
Field experimental data in the atmospheric surface layer are analyzed using toolsfrom statistical geometry. The data consist of velocity measurements from sonicanemometer arrays. In the context of large eddy simulations (LES), these arrayspermit the spatial filtering needed to separate large from small scales. Time seriesof various quantities relevant to LES are evaluated from the data. Results show thatthe preferred filtered fluid deformation is axisymmetric extension and the preferredsubgrid stress state is axisymmetric contraction. The filtered fluctuating vorticityshows preferred alignments with the mean vorticity, with the streamwise direction,and with the intermediate strain-rate eigenvector. The alignment between eigenvectorsof the subgrid-scale stress and filtered strain rate is used to test eddy viscosity andmixed model formulations. In qualitative agreement with prior laboratory measurements at much lower Reynolds numbers, a bimodal distribution is observed, which can be reduced to good alignment with eddy viscosity closure using the mixed model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号