首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445篇
  免费   19篇
  国内免费   4篇
测绘学   10篇
大气科学   46篇
地球物理   83篇
地质学   135篇
海洋学   60篇
天文学   87篇
综合类   5篇
自然地理   42篇
  2024年   2篇
  2021年   4篇
  2020年   10篇
  2019年   5篇
  2018年   12篇
  2017年   12篇
  2016年   13篇
  2015年   12篇
  2014年   16篇
  2013年   39篇
  2012年   18篇
  2011年   16篇
  2010年   12篇
  2009年   23篇
  2008年   23篇
  2007年   14篇
  2006年   14篇
  2005年   13篇
  2004年   25篇
  2003年   26篇
  2002年   33篇
  2001年   15篇
  2000年   12篇
  1999年   9篇
  1998年   8篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1989年   4篇
  1988年   7篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1977年   2篇
  1973年   2篇
  1971年   2篇
  1969年   2篇
  1966年   2篇
  1923年   1篇
  1887年   1篇
排序方式: 共有468条查询结果,搜索用时 31 毫秒
71.
72.
Five research cruises were undertaken incorporating ADCP sections along the Cretan Arc Straits and CTD surveys covering the entire area of the Straits and the Cretan Sea. In addition, six moorings (with 15 current meters) were deployed within the Straits, which monitored flows in the surface (50 m), intermediate (250 m), and deep (50 m from the bottom) layers. The ADCP, CM, and CTD datasets enable the derivation of water transports through the Cretan Arc Straits to be assessed. Flow structure through the Cretan Arc Straits is not the typical flow regime with a surface inflow and deep outflow, instead there is a persistent deep outflow of Cretan Deep Water (CDW) (σθ>29.2) with an annual mean of ˜0.6 Sv, through the Antikithira and Kassos Straits at depths below 400 m and 500 m, respectively. CDW outflowing transports are higher (˜0.8 Sv) in April–June, and lower (˜0.3 Sv) in October–December. Within the upper water layer (0–˜400 m), the transport and the water exchanges through the Straits are controlled by local circulation features, which weaken substantially below 200 m. The Asia Minor Current (AMC) influences the Rhodes and the Karpathos Straits, resulting in a net inflow of water. In contrast, the Mirtoan/West Cretan Cyclone influences the Antikithira and Kithira Straits, where there is a net outflow. In the Kassos Strait, there is a complex interaction between the East Cretan Cyclone, the Ierapetra Anticyclone and the westward extension of the Rhodes Gyre, which results in a variable flow regime. There is a net inflow in autumn and early winter, and a switch to a net outflow in early spring and summer. The total inflow and outflow, throughout all of the Straits, ranged from ˜2 to ˜3.5 Sv, with higher values in autumn and early winter and lower in summer. The AMC carries ˜2 Sv of inflow through the Rhodes and Karpathos Straits, and this accounts for 60–80% of the total inflow. About 10–15% of the total outflow is of CDW, and a further 45–70% occurs through the upper 400 m of the Kithira and Antikithira Straits. The Kassos Strait exhibits a net inflow of ˜0.7 Sv in autumn and early winter, with a net outflow of ˜0.5 Sv in early spring and summer.  相似文献   
73.
Small, steep watersheds are prolific sediment sources from which sediment flux is highly sensitive to climatic changes. Storm intensity and frequency are widely expected to increase during the 21st century, and so assessing the response of small, steep watersheds to extreme rainfall is essential to understanding landscape response to climate change. During record winter rainfall in 2016–2017, the San Lorenzo River, coastal California, had nine flow peaks representing 2–10‐year flood magnitudes. By the third flood, fluvial suspended sediment showed a regime shift to greater and coarser sediment supply, coincident with numerous landslides in the watershed. Even with no singular catastrophic flood, these flows exported more than half as much sediment as had a 100‐year flood 35 years earlier, substantially enlarging the nearshore delta. Annual sediment load in 2017 was an order of magnitude greater than during an average‐rainfall year, and 500‐fold greater than in a recent drought. These anomalous sediment inputs are critical to the coastal littoral system, delivering enough sediment, sometimes over only a few days, to maintain beaches for several years. Future projections of megadroughts punctuated by major atmospheric‐river storm activity suggest that interannual sediment‐yield variations will become more extreme than today in the western USA, with potential consequences for coastal management, ecosystems, and water‐storage capacity. The occurrence of two years with major sediment export over the past 35 years that were not associated with extremes of the El Niño Southern Oscillation or Pacific Decadal Oscillation suggests caution in interpreting climatic signals from marine sedimentary deposits derived from small, steep, coastal watersheds, to avoid misinterpreting the frequencies of those cycles. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
74.
River discharge and nutrient measurements are subject to aleatory and epistemic uncertainties. In this study, we present a novel method for estimating these uncertainties in colocated discharge and phosphorus (P) measurements. The “voting point”‐based method constrains the derived stage‐discharge rating curve both on the fit to available gaugings and to the catchment water balance. This helps reduce the uncertainty beyond the range of available gaugings and during out of bank situations. In the example presented here, for the top 5% of flows, uncertainties are shown to be 139% using a traditional power law fit, compared with 40% when using our updated “voting point” method. Furthermore, the method is extended to in situ and lab analysed nutrient concentration data pairings, with lower uncertainties (81%) shown for high concentrations (top 5%) than when a traditional regression is applied (102%). Overall, for both discharge and nutrient data, the method presented goes some way to accounting for epistemic uncertainties associated with nonstationary physical characteristics of the monitoring site.  相似文献   
75.
The 2 to 5 km thick, sandstone-dominated (>90%) Jura Quartzite is an extreme example of a mature Neoproterozoic sandstone, previously interpreted as a tide-influenced shelf deposit and herein re-interpreted within a fluvio-tidal deltaic depositional model. Three issues are addressed: (i) evidence for the re-interpretation from tidal shelf to tidal delta; (ii) reasons for vertical facies uniformity; and (iii) sand supply mechanisms to form thick tidal-shelf sandstones. The predominant facies (compound cross-bedded, coarse-grained sandstones) represents the lower parts of metres to tens of metres high, transverse fluvio-tidal bedforms with superimposed smaller bedforms. Ubiquitous erosional surfaces, some with granule–pebble lags, record erosion of the upper parts of those bedforms. There was selective preservation of the higher energy, topographically-lower, parts of channel-bar systems. Strongly asymmetrical, bimodal, palaeocurrents are interpreted as due to associated selective preservation of fluvially-enhanced ebb tidal currents. Finer-grained facies are scarce, due largely to suspended sediment bypass. They record deposition in lower-energy environments, including channel mouth bars, between and down depositional-dip of higher energy fluvio-ebb tidal bars. The lack of wave-formed sedimentary structures and low continuity of mudstone and sandstone interbeds, support deposition in a non-shelf setting. Hence, a sand-rich, fluvial–tidal, current-dominated, largely sub-tidal, delta setting is proposed. This new interpretation avoids the problem of transporting large amounts of coarse sand to a shelf. Facies uniformity and vertical stacking are likely due to sediment oversupply and bypass rather than balanced sediment supply and subsidence rates. However, facies evidence of relative sea level changes is difficult to recognise, which is attributed to: (i) the areally extensive and polygenetic nature of the preserved facies, and (ii) a large stored sediment buffer that dampened response to relative sea-level and/or sediment supply changes. Consideration of preservation bias towards high-energy deposits may be more generally relevant, especially to thick Neoproterozoic and Lower Palaeozoic marine sandstones.  相似文献   
76.
Fusion crusts form during the atmospheric entry heating of meteorites and preserve a record of the conditions that occurred during deceleration in the atmosphere. The fusion crust of the Winchcombe meteorite closely resembles that of other stony meteorites, and in particular CM2 chondrites, since it is dominated by olivine phenocrysts set in a glassy mesostasis with magnetite, and is highly vesicular. Dehydration cracks are unusually abundant in Winchcombe. Failure of this weak layer is an additional ablation mechanism to produce large numbers of particles during deceleration, consistent with the observation of pulses of plasma in videos of the Winchcombe fireball. Calving events might provide an observable phenomenon related to meteorites that are particularly susceptible to dehydration. Oscillatory zoning is observed within olivine phenocrysts in the fusion crust, in contrast to other meteorites, perhaps owing to temperature fluctuations resulting from calving events. Magnetite monolayers are found in the crust, and have also not been previously reported, and form discontinuous strata. These features grade into magnetite rims formed on the external surface of the crust and suggest the trapping of surface magnetite by collapse of melt. Magnetite monolayers may be a feature of meteorites that undergo significant degassing. Silicate warts with dendritic textures were observed and are suggested to be droplets ablated from another stone in the shower. They, therefore, represent the first evidence for intershower transfer of ablation materials and are consistent with the other evidence in the Winchcombe meteorite for unusually intense gas loss and ablation, despite its low entry velocity.  相似文献   
77.
Single borehole dilution tests (SBDTs) are an inexpensive but effective technique for hydrogeological characterization of hard-rock aquifers. We present a freely available, easy-to-use, open-source Python package, DISOLV, for plotting, analyzing, and modeling SBDT data. DISOLV can significantly reduce the time spent interpreting field data by helping to identify flowing fractures intersecting the borehole and estimate the corresponding flow rates. DISOLV is successfully benchmarked against two analytical solutions. We also present an example application to real data collected in a borehole in a crystalline basement aquifer in southern India.  相似文献   
78.
Observations of supersonic jet propagation in low-current x-pinches are reported. X-pinches comprising of four 7.5 ??m diameter tungsten wires were driven by an 80 kA, 50 ns current pulse from a compact pulser. Coronal plasma surrounding the wire cores was accelerated perpendicular to their surface due to the global J×B force, and traveled toward the axis of the x-pinch to form an axially propagating jet. These jets moved towards the electrodes and, late in time (??150 ns), were observed to propagate well above the anode with a velocity of 3.3±0.6×104 m/s. Tungsten jets remained collimated at distances of up to 16 mm from the cross point, and an estimate of the local sound speed gives a Mach number of ??6. This is the first demonstration that supersonic plasma jets can be produced using x-pinches with such a small, low current pulser. Experimental data compares well to three-dimensional simulations using the GORGON resistive MHD code, and possible scaling to astrophysical jets is discussed.  相似文献   
79.
80.
Progressive rock‐fall failures in natural rock slopes are common in many environments, but often elude detailed quantitative documentation and analysis. Here we present high‐resolution photography, video, and laser scanning data that document spatial and temporal patterns of a 15‐month‐long sequence of at least 14 rock falls from the Rhombus Wall, a sheeted granitic cliff in Yosemite Valley, California. The rock‐fall sequence began on 26 August 2009 with a small failure at the tip of an overhanging rock slab. Several hours later, a series of five rock falls totaling 736 m3 progressed upward along a sheeting joint behind the overhanging slab. Over the next 3 weeks, audible cracking occurred on the Rhombus Wall, suggesting crack propagation, while visual monitoring revealed opening of a sheeting joint adjacent to the previous failure surface. On 14 September 2009 a 110 m3 slab detached along this sheeting joint. Additional rock falls between 30 August and 20 November 2010, totaling 187 m3, radiated outward from the initial failure area along cliff (sub)parallel sheeting joints. We suggest that these progressive failures might have been related to stress redistributions accompanying propagation of sheeting joints behind the cliff face. Mechanical analyses indicate that tensile stresses should occur perpendicular to the cliff face and open sheeting joints, and that sheeting joints should propagate parallel to a cliff face from areas of stress concentrations. The analyses also account for how sheeting joints can propagate to lengths many times greater than their depths behind cliff faces. We posit that as a region of failure spreads across a cliff face, stress concentrations along its margin will spread with it, promoting further crack propagation and rock falls. Published in 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号