首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71229篇
  免费   1127篇
  国内免费   659篇
测绘学   1714篇
大气科学   5029篇
地球物理   14214篇
地质学   25227篇
海洋学   6164篇
天文学   16332篇
综合类   208篇
自然地理   4127篇
  2022年   396篇
  2021年   704篇
  2020年   777篇
  2019年   825篇
  2018年   1893篇
  2017年   1759篇
  2016年   2235篇
  2015年   1318篇
  2014年   2176篇
  2013年   3766篇
  2012年   2276篇
  2011年   3118篇
  2010年   2605篇
  2009年   3504篇
  2008年   3254篇
  2007年   3045篇
  2006年   2876篇
  2005年   2353篇
  2004年   2253篇
  2003年   2110篇
  2002年   1927篇
  2001年   1800篇
  2000年   1716篇
  1999年   1377篇
  1998年   1470篇
  1997年   1387篇
  1996年   1100篇
  1995年   1142篇
  1994年   962篇
  1993年   872篇
  1992年   855篇
  1991年   759篇
  1990年   856篇
  1989年   717篇
  1988年   650篇
  1987年   814篇
  1986年   663篇
  1985年   855篇
  1984年   922篇
  1983年   862篇
  1982年   831篇
  1981年   707篇
  1980年   663篇
  1979年   606篇
  1978年   603篇
  1977年   552篇
  1976年   539篇
  1975年   499篇
  1974年   506篇
  1973年   468篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
The 1985 outburst of the bright, recurrent nova RS Oph was almost simultaneously observed at X-ray, UV, optical, IR and radio frequencies at many epochs. The abundances in the ejected shell and the development of the bolometric luminosity as a function of time suggest that the cause of the outburst is a nuclear runaway on a massive white dwarf.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Development, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   
102.
A model is presented for the generation and evolution of bump-in-tail driven Langmuir waves in the solar wind during type III emission, which removes a number of apparent inconsistencies between theory and observations. It is argued that there must be localized enhancements of f b /v by a factor of 102 over the measured average values. Growth rates and energy densities of Langmuir waves are, therefore, considerably enhanced, permitting growth to overcome linear scattering losses, and also allowing nonlinear decay into ion-acoustic waves, in line with observations. Estimates are made of the probability distribution p(E), of wave field strengths E, based on linear and nonlinear wave-packet evolution, yielding p(E) E –a, 3. This helps explain why very high values of E are rarely found in the measured spiky wave turbulence.  相似文献   
103.
The period-growth dichotomy of the solar cycle predicts that cycle 21, the present solar cycle, will be of long duration (>133 mo), ending after July 1987. Bimodality of the solar cycle (i.e., cycles being distributed into two groups according to cycle length, based on a comparison to the mean cycle period) is clearly seen in a scatter diagram of descent versus ascent durations. Based on the well-observed cycles 8–20, a linear fit for long-period cycles (being a relatively strong inverse relationship that is significant at the 5% level and having a coefficient of determination r 2 0.66) suggests that cycle 21, having an ascent of 42 mo, will have a descent near 99 mo; thus, cycle duration of about 141 mo is expected. Like cycle 11, cycle 21 occurs on the downward envelope of the sunspot number curve, yet is associated with an upward first difference in amplitude. A comparison of individual cycle, smoothed sunspot number curves for cycles 21 and 11 reveals striking similarity, which suggests that if, indeed, cycle 21 is a long-period cycle, then it too may have an extended tail of sustained, low, smoothed sunspot number, with cycle 22 minimum occurring either in late 1987 or early 1988.  相似文献   
104.
A general velocity-height relation for both antimatter and ordinary matter meteor is derived. This relation can be expressed as % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHfpqDdaWgaaWcbaGaamOEaaqabaaakeaacqaHfpqDdaWgaaWcbaGa% eyOhIukabeaaaaGccqGH9aqpcaqGLbGaaeiEaiaabchacaqGGaWaam% WaaeaacqGHsisldaWcaaqaaiaadkeaaeaacaWGHbaaaiaabwgacaqG% 4bGaaeiCaiaabIcacaqGTaGaamyyaiaadQhacaGGPaaacaGLBbGaay% zxaaGaeyOeI0YaaSaaaeaacaWGdbaabaGaamOqaiabew8a1naaBaaa% leaacqGHEisPaeqaaaaakmaacmaabaGaaGymaiabgkHiTiaabwgaca% qG4bGaaeiCamaadmaabaGaeyOeI0YaaSaaaeaacaWGcbaabaGaamyy% aaaacaqGLbGaaeiEaiaabchacaqGOaGaaeylaiaadggacaWG6bGaai% ykaaGaay5waiaaw2faaaGaay5Eaiaaw2haaiaacYcaaaa!64FD!\[\frac{{\upsilon _z }}{{\upsilon _\infty }} = {\text{exp }}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right] - \frac{C}{{B\upsilon _\infty }}\left\{ {1 - {\text{exp}}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right]} \right\},\]where z is the velocity of the meteoroid at height z, its velocity before entrance into the Earth's atmosphere, is the scale-height, and C parameter proportional to the atom-antiatom annihilation cross- section, which is experimentally unknown. The parameter B (B = DA0/m) is the well known parameter for koinomatter (ordinary matter) meteors, D is the drag factor, 0 is the air density at sea level, A is the cross sectional area of the meteoroid and m its mass.When the annihilation cross-section is zero — in the case of ordinary meteors — the parameter C is also zero and the above derived equation becomes % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHfpqDdaWgaaWcbaGaamOEaaqabaaakeaacqaHfpqDdaWgaaWcbaGa% eyOhIukabeaaaaGccqGH9aqpcaqGLbGaaeiEaiaabchacaqGGaWaam% WaaeaacqGHsisldaWcaaqaaiaadkeaaeaacaWGHbaaaiaabwgacaqG% 4bGaaeiCaiaabIcacaqGTaGaamyyaiaadQhacaGGPaaacaGLBbGaay% zxaaGaaiilaaaa!4CF5!\[\frac{{\upsilon _z }}{{\upsilon _\infty }} = {\text{exp }}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right],\]which is the well known velocity-height relation for koinomatter meteors.In the case in which the Universe contains antimatter in compact solid structure, the velocity-height relation can be found useful.Work performed mainly at the Nuclear Physics Laboratory of the National University of Athens, Greece.  相似文献   
105.
106.
The relative orientations of various VLBI celestial reference frames are evaluated on the basis of coordinate differences of common sources. It is shown that an accuracy better than 0.001 can be achieved. Possible regional deformations in the different catalogues are investigated; they are found to reach a few 0.001 in some restricted zones. The application of these studies to the realisation of a combined celestial reference frame consistent with the BIH Terrestrial System is outlined.  相似文献   
107.
The surface distribution of M stars is studied by differentiating them according to whether they show a circumstellar dust shell (CS) or not. Analysis shows that galactic latitudinal and longitudinal distributions are not determined by spectral subclasses alone. The study also indicates that M-type stars with CS have higher luminosities in the K band than those without CS. The M stars used in the study are obtained from theTwo-Micron Sky-Survey Catalogue (IRC) which is a most unbiased sample with respect to the interstellar extinction. The CS feature is identified by the ratio of flux densities at 12 and 25 m in the IRAS point source catalog.  相似文献   
108.
M. J. Hagyard 《Solar physics》1988,115(1):107-124
We have analyzed the vector magnetic field of an active region at a location of repeated flaring to determine the nature of the currents flowing in the areas where the flares initiated. The component of electric current density crossing the photosphere along the line-of-sight was derived from the observed transverse component of the magnetic field. The maximum concentrations of these currents occurred exactly at the sites of flare initiation and where the photospheric field was sheared the most. The calculated distribution of current density at the flare sites suggested that currents were flowing out of an area of positive magnetic polarity and across the magnetic inversion line into two areas of negative polarity. This interpretation was reinforced by a calculation of the source field, the magnetic field produced in the photosphere by the electric currents above the photosphere. In the vicinity of the flare sites, the calculated source field exhibited three particular characteristics: (1) maximum magnitudes at the sites of flare initiation, (2) a rotational direction where the vertical current density was concentrated, and (3) a fairly constant angular orientation with the magnetic inversion line. The source field was thus very similar to the field produced by two arcades of currents crossing the inversion line at the locations of greatest magnetic shear with orientations of about 60° to the inversion line. With this orientation, the inferred arcades would be aligned with the observed chromospheric fibrils seen in the H data so that the currents were field-aligned above the photosphere. The field thus exhibited a vertical gradient of magnetic shear with the shear decreasing upward from the photosphere. We estimated the currents in the two arcades by matching the source field derived from observations with that produced by a model of parallel loops of currents. We found that the loops of the model would each have a radius of 4500 km, a separation of 1830 km, and carry a current of 0.15 × 1012 A. Values of vertical current densities and source fields appearing in the umbrae of the two large sunspots away from the flare sites were shown to lie at or below the level of uncertainty in the data. The main source of this uncertainty lay in the method by which the 180° ambiguity in the azimuth of the transverse field is resolved in umbral areas. We thus concluded that these quantities in large umbrae should be treated with a healthy skepticism. Finally, we found that the source field at the flare sites was produced almost entirely by the angular difference between the observed and potential field and not by the difference in field intensity.  相似文献   
109.
The property of anthropomorphism as it is held in fractal cosmography is reconstructed.Man is only interested in the probability distribution of mass in cases where mass does not vanish, and he finds no help at all to be told that such cases almost never occur.  相似文献   
110.
The totality of the results obtained in the VEGA, GIOTTO and SUISEI projects does not lend itself to interpretation within the old sublimation models of comet activity considering solar radiation as the sole source of energy. Among them are the systematic excess of the velocity and temperature of the gas escaping from the nucleus over the theoretical values, the outflow being concentrated in several ( ~ 12–15) narrow ( ~ 300 m in size at the nucleus) hypersonic jets carrying very large amounts of remarkably fine CHON dust and located along continuous lines on the nuclear surface, intense release from the nucleus or very close to it (2 × 103km) of CO (Q Co/Q H2 O = 0.05–0.2) with a smaller amount of CO2 (Q CO 2/ Q H2 O 0.015), large near-nucleus abundances of C, C+ (Q C/Q CO 0.29), etc.The new observations, together with some earlier data still poorly understood (e.g. the appearance in the coma of large amounts of C3) can be accounted for by assuming the cometary ices to contain, apart from hydrocarbons, nitrogen-containing compounds, etc. also of free oxygen ( ~ 15 wt.%). Under these conditions, burning should occur in the products of sublimation under deficiency of oxidizer accompanied by the production of soot, smoke, etc. The burning should propagate under the surface crust and localize primarily at a few sites.The presence of oxygen in cometary ices follows from a new eruption theory assuming the minor bodies of the Solar System to have formed in explosions of the massive ice envelopes saturated by electrolysis products on distant moonlike bodies of the type of Ganymede and Callisto.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号