首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119180篇
  免费   2027篇
  国内免费   1207篇
测绘学   3082篇
大气科学   8788篇
地球物理   24374篇
地质学   41416篇
海洋学   10306篇
天文学   26193篇
综合类   372篇
自然地理   7883篇
  2021年   1010篇
  2020年   1179篇
  2019年   1243篇
  2018年   2596篇
  2017年   2442篇
  2016年   3211篇
  2015年   2061篇
  2014年   3164篇
  2013年   6188篇
  2012年   3335篇
  2011年   4679篇
  2010年   4026篇
  2009年   5439篇
  2008年   4996篇
  2007年   4603篇
  2006年   4527篇
  2005年   3710篇
  2004年   3763篇
  2003年   3497篇
  2002年   3299篇
  2001年   2960篇
  2000年   2879篇
  1999年   2412篇
  1998年   2458篇
  1997年   2356篇
  1996年   2019篇
  1995年   1967篇
  1994年   1776篇
  1993年   1612篇
  1992年   1536篇
  1991年   1400篇
  1990年   1600篇
  1989年   1378篇
  1988年   1231篇
  1987年   1520篇
  1986年   1316篇
  1985年   1648篇
  1984年   1845篇
  1983年   1754篇
  1982年   1642篇
  1981年   1516篇
  1980年   1354篇
  1979年   1256篇
  1978年   1319篇
  1977年   1195篇
  1976年   1146篇
  1975年   1070篇
  1974年   1070篇
  1973年   1069篇
  1972年   683篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The twin perspective 4 point (twin P4P) problem – also called the combined three dimensional resection-intersection problem – is the problem of finding the position of a scene object from 4 correspondence points and a scene stereopair. While the perspective centers of the left and right scene image are positioned by means of a double three dimensional resection, the position of the scene object imaged on the left and right photograph is determined by a three dimensional intersection based upon given resected perspective centers. Here we present a new algorithm solving the twin P4P problem by means of M?bius barycentric coordinates. In the first algorithmic step we determine the distances between the perspective centers and the unknown intersected point by solving a linear system of equations. Typically, area elements of the left and right image build up the linear equation system. The second algorithmic step allows for the computation of the M?bius barycentric coordinates of the unknown intersected point which are thirdly converted into three dimensional object space coordinates {X,Y,Z} of the intersected point. Typically, this three-step algorithm based upon M?bius barycentric coordinates takes advantage of the primary double resection problem from which only distances from four correspondence points to the left and right perspective centre are needed. No orientation parameters and no coordinates of the left and right perspective center have to be made available. Received 1 May 1996; Accepted 13 September 1996  相似文献   
992.
The present contribution is the second of four parts. It considers the precision and correlation of the least-squares estimators of the carrier phase ambiguities. It is shown how the precision and correlation of the double-differenced ambiguities as well as of the widelane ambiguities are effected by the observation weights, by the number of satellites tracked, by the number of observation epochs used, and by the change over time of the relative receiver-satellite geometry. Also the ability of the widelane transformation to decorrelate and to improve the precision is investigated. Received: 16 July 1996 / Accepted: 14 November 1996  相似文献   
993.
This contribution is the last of four parts and deals with the link between baseline precision and ambiguity reliability. It is shown analytically how and to what extent the baseline-ambiguity correlation is related to the gain in baseline precision, to the volume of the ambiguity search space, and to the impact of potential integer ambiguity biases. Also, an ambiguity DOP measure is introduced together with its closed-form formulae for the three different single-baseline models. Received: 16 July 1996 / Accepted: 14 November 1996  相似文献   
994.
The spacetime gravitational field of a deformable body   总被引:3,自引:0,他引:3  
The high-resolution analysis of orbit perturbations of terrestrial artificial satellites has documented that the eigengravitation of a massive body like the Earth changes in time, namely with periodic and aperiodic constituents. For the space-time variation of the gravitational field the action of internal and external volume as well as surface forces on a deformable massive body are responsible. Free of any assumption on the symmetry of the constitution of the deformable body we review the incremental spatial (“Eulerian”) and material (“Lagrangean”) gravitational field equations, in particular the source terms (two constituents: the divergence of the displacement field as well as the projection of the displacement field onto the gradient of the reference mass density function) and the `jump conditions' at the boundary surface of the body as well as at internal interfaces both in linear approximation. A spherical harmonic expansion in terms of multipoles of the incremental Eulerian gravitational potential is presented. Three types of spherical multipoles are identified, namely the dilatation multipoles, the transport displacement multipoles and those multipoles which are generated by mass condensation onto the boundary reference surface or internal interfaces. The degree-one term has been identified as non-zero, thus as a “dipole moment” being responsible for the varying position of the deformable body's mass centre. Finally, for those deformable bodies which enjoy a spherically symmetric constitution, emphasis is on the functional relation between Green functions, namely between Fourier-/ Laplace-transformed volume versus surface Love-Shida functions (h(r),l(r) versus h (r),l (r)) and Love functions k(r) versus k (r). The functional relation is numerically tested for an active tidal force/potential and an active loading force/potential, proving an excellent agreement with experimental results. Received: December 1995 / Accepted: 1 February 1997  相似文献   
995.
 A method is described for evaluating the ‘partial derivatives’ of globally averaged top-of-atmosphere (TOA) radiation changes with respect to basic climate model physical parameters. This method is used to analyse feedbacks in the Australian Bureau of Meteorology Research Centre general circulation model. The parameters considered are surface temperature, water vapour, lapse rate and cloud cover. The climate forcing which produces the changes is a globally uniform sea surface temperature (SST) perturbation. The first and second order differentials of model parameters with respect to the forcing (i.e. SST changes) are estimated from quadratic least square fitting. Except for total cloud cover, variables are found to be strong functions of global SST. Strongly non-linear variations of lapse rate and high cloud amount and height appear to relate to the non-linear response in penetrative convection. Globally averaged TOA radiation differentials with respect to model parameters are also evaluated. With the exception of total cloud contributions, a high correlation is generally found to exist, on the global mean level, between TOA radiation and the respective parameter perturbations. The largest non-linear terms contributing to radiative changes are those due to lapse rate and high cloud. The contributions of linear and non-linear terms to the overall radiative response from a 4 K SST perturbation are assessed. Significant non-linear responses are found to be associated with lapse rate, water vapour and cloud changes. Although the exact magnitude of these responses is likely to be a function of the particular model as well as the imposed SST perturbation pattern, the present experiments flag these as processes which cannot properly be understood from linear theory in the evaluation of climate change sensitivity. Received: 16 January 1997/Accepted: 9 May 1997  相似文献   
996.
 A two-dimensional vertically integrated ice flow model has been developed to test the importance of various processes and concepts used for the prediction of the contribution of the Greenland ice-sheet to sea-level rise over the next 350 y (short-term response). The mass balance is modelled by the degree-day method and the energy-balance method. The lithosphere is considered to respond isostatically to a point load and the time evolution of the bedrock follows from a viscous asthenosphere. According to the IPCC-IS92a scenario (with constant aerosols after 1990) the Greenland ice-sheet is likely to cause a global sea level rise of 10.4 cm by 2100 AD. It is shown, however, that the result is sensitive to precise model formulations and that simplifications as used in the sea-level projection in the IPCC-96 report yield less accurate results. Our model results indicate that, on a time scale of a hundred years, including the dynamic response of the ice-sheet yields more mass loss than the fixed response in which changes in geometry are not incorporated. It appears to be important to consider sliding, as well as the fact that climate sensitivity increases for larger perturbations. Variations in predicted sea-level change on a time scale of hundred years depend mostly on the initial state of the ice-sheet. On a time scale of a few hundred years, however, the variability in the predicted melt is dominated by the variability in the climate scenarios. Received: 21 August 1996/Accepted: 12 May 1997  相似文献   
997.
A predictability study of simulated North Atlantic multidecadal variability   总被引:1,自引:1,他引:1  
 The North Atlantic is one of the few places on the globe where the atmosphere is linked to the deep ocean through air–sea interaction. While the internal variability of the atmosphere by itself is only predictable over a period of one to two weeks, climate variations are potentially predictable for much longer periods of months or even years because of coupling with the ocean. This work presents details from the first study to quantify the predictability for simulated multidecadal climate variability over the North Atlantic. The model used for this purpose is the GFDL coupled ocean-atmosphere climate model used extensively for studies of global warming and natural climate variability. This model contains fluctuations of the North Atlantic and high-latitude oceanic circulation with variability concentrated in the 40–60 year range. Oceanic predictability is quantified through analysis of the time-dependent behavior of large-scale empirical orthogonal function (EOF) patterns for the meridional stream function, dynamic topography, 170 m temperature, surface temperature and surface salinity. The results indicate that predictability in the North Atlantic depends on three main physical mechanisms. The first involves the oceanic deep convection in the subpolar region which acts to integrate atmospheric fluctuations, thus providing for a red noise oceanic response as elaborated by Hasselmann. The second involves the large-scale dynamics of the thermohaline circulation, which can cause the oceanic variations to have an oscillatory character on the multidecadal time scale. The third involves nonlocal effects on the North Atlantic arising from periodic anomalous fresh water transport advecting southward from the polar regions in the East Greenland Current. When the multidecadal oscillatory variations of the thermohaline circulation are active, the first and second EOF patterns for the North Atlantic dynamic topography have predictability time scales on the order of 10–20 y, whereas EOF-1 of SST has predictability time scales of 5–7 y. When the thermohaline variability has weak multidecadal power, the Hasselmann mechanism is dominant and the predictability is reduced by at least a factor of two. When the third mechanism is in an extreme phase, the North Atlantic dynamic topography patterns realize a 10–20 year predictability time scale. Additional analysis of SST in the Greenland Sea, in a region associated with the southward propagating fresh water anomalies, indicates the potential for decadal scale predictability for this high latitude region as well. The model calculations also allow insight into regional variations of predictability, which might be useful information for the design of a monitoring system for the North Atlantic. Predictability appears to break down most rapidly in regions of active convection in the high-latitude regions of the North Atlantic. Received: 28 October 1996 / Accepted: 21 March 1997  相似文献   
998.
Simultaneousindependent measurements of NOy and NOx(NOx= NO + NO2) by high-sensitivitychemiluminescence systems and of PAN (peroxyacetylnitrate) and PPN (peroxypropionyl nitrate) by GC-ECDwere made at Spitsbergen in the Norwegian Arcticduring the first half year of 1994. The average mixingratio of the sum of PAN and PPN (denoted PANs)increased from around 150 pptv in early winter to amaximum of around 500 pptv in late March, whereasepisodic peak values reached 800 pptv. This occurredsimultaneously with a maximum in ozone which increasedto 45–50 ppbv in March–April. The average NOxmixing ratio was 27 pptv and did not show any cyclethrough the period. The NOy mixing ratio showeda maximum in late March, while the difference betweenNOy and PAN decreased during spring. This is anindication of the dominance of PAN in the NOybudget in the Arctic, but possible changes in theefficiency of the NOy converter could alsocontribute to this. Although most PAN in theArctic is believed to be due to long range transport,the observations indicate local loss and formationrates of up to 1–2 pptv h-1 in April–May.Measurements of carbonyl compounds suggest thatacetaldehyde was the dominant, local precursor ofPAN.Now at 1.  相似文献   
999.
Analysis of the two-dimensional checkerboardproblem of many alternating surfaces with different properties andvarious scales and aspect ratios is extended to the general case ofwinds oblique to the surface pattern. Relevant periodic solutions ofa three-dimensional atmospheric convection-diffusion equation arefound, and used to estimate blending heights for both concentrationand flux.Illustrative results show negligible directional effect on blendingheight for X1* (the smaller pattern wavelength) of 10 m, but a ratio of maximum/minimum heights of about 3 to 5 for X1* = 100 m. For X1* = 1000 mthe directional variation is strongly peaked with a maximum/minimum ratio of 8 to 14. At fixed X1* the maximum increases with check aspect ratio. It is associated withthe case where the wind blows along one check diagonal. In thatsingular situation, damping of the dominant harmonic varying normalto the diagonal depends purely on transverse and vertical diffusion:horizontal convection and wind shear play no part.  相似文献   
1000.
Summary The relation between the air temperature and the global solar radiation, which can be conveniently represented by the three characteristics: mean, amplitude and phase lag of the first harmonic of global radiation and air temperatures. A good correlation between the air temperature and the solar radiation has been found when the phase lag between them is nearly of 30 days.With 6 Figures  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号