首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   9篇
测绘学   3篇
大气科学   12篇
地球物理   30篇
地质学   34篇
海洋学   13篇
天文学   33篇
自然地理   11篇
  2024年   5篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   8篇
  2017年   2篇
  2016年   8篇
  2015年   8篇
  2014年   3篇
  2013年   10篇
  2012年   4篇
  2011年   6篇
  2010年   5篇
  2009年   11篇
  2008年   5篇
  2007年   8篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   6篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1994年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有136条查询结果,搜索用时 31 毫秒
101.
We have constructed an artificial laboratory fumarole to calibrate the most common chemical volcanic gas sampling techniques and obtain a quantitative measure of their efficacy. We have also developed and tested a new rugged and portable venturi spray gas sampler. The venturi sampler reproduced the output gas composition most accurately, followed by the Giggenbach bottles, filter packs, and lastly alkaline traps. Passive alkaline traps, however, did better than filter packs when sampling more concentrated fumarole gases. Under ideal conditions, the accuracy of the Giggenbach bottles was identical to the venturi sampler, although there was slightly more scatter. The Giggenbach sampler was more susceptible to problems with condensation on the input train even in a laboratory setting, and this technique was only effective in relatively concentrated gas streams. Filter packs are also effective, but extreme care must be exercised to maintain strong undersaturation with respect to the acid gas. If strong undersaturation (high pH) is not maintained, the filter packs return erroneously low S/Cl and S/F ratios. Use of a pH indicator is an effective way of avoiding this problem. The passive alkaline traps also under-sample sulfur, resulting in low reported S/Cl and S/F ratios. It appears that the overall sampling efficiency of all techniques was not strongly affected by oxygen fugacity over the limited range tested. When detecting sulfate and sulfite simultaneously, we found no difference in total sulfur before and after oxidation. This suggests that all sulfur from the gas regardless of oxidation state was absorbed as sulfite or sulfate and/or was quickly oxidized in solution. This conclusion is supported by IC HS reference samples.  相似文献   
102.
海洋骨骼生物(如石珊瑚目)被越来越多地用作古今气候的指示物。石珊瑚的微量元素分析已被用于海水的古测温学研究(如Mitsuguchi等,1996;Marshall和McCulloch,2002)以及海岸径流(如Alibert等,2003)、污染(如Fallon等,2002)和海洋上升流(Lea等,1989)的调查,然而,骨骼碳酸盐作为海水替代物的程度要取决于它们反映周围海洋化学的情况如何。  相似文献   
103.
On February 28, 2021, a fireball dropped ∼0.6 kg of recovered CM2 carbonaceous chondrite meteorites in South-West England near the town of Winchcombe. We reconstruct the fireball's atmospheric trajectory, light curve, fragmentation behavior, and pre-atmospheric orbit from optical records contributed by five networks. The progenitor meteoroid was three orders of magnitude less massive (∼13 kg) than any previously observed carbonaceous fall. The Winchcombe meteorite survived entry because it was exposed to a very low peak atmospheric dynamic pressure (∼0.6 MPa) due to a fortuitous combination of entry parameters, notably low velocity (13.9 km s−1). A near-catastrophic fragmentation at ∼0.07 MPa points to the body's fragility. Low entry speeds which cause low peak dynamic pressures are likely necessary conditions for a small carbonaceous meteoroid to survive atmospheric entry, strongly constraining the radiant direction to the general antapex direction. Orbital integrations show that the meteoroid was injected into the near-Earth region ∼0.08 Myr ago and it never had a perihelion distance smaller than ∼0.7 AU, while other CM2 meteorites with known orbits approached the Sun closer (∼0.5 AU) and were heated to at least 100 K higher temperatures.  相似文献   
104.
Due to recent Supreme Court rulings, there has been an increased interest in the isolated wetlands of the United States. These types of wetlands serve vital ecological roles such as water quality regulation and as a habitat of biological diversity. This study focuses specifically on mapping of geographically isolated wetlands, or those that are separated from traditional wetlands by a given spatial extent, using Geographic Object-Based Image Analysis (GeOBIA). GeOBIA is a type of remote sensing analysis that identifies objects and features in data-sets via automated methodologies. This type of analysis offers the opportunity to increase the efficiency of what has traditionally been a very labour intensive process of manual photo-interpretation. This analysis resulted in the delineation of 26,424 areas as geographically isolated wetlands. These results were assessed for accuracy through both manual inspection of aerial imagery and field verification which yielded accuracies of 83.7 and 87.7%, respectively.  相似文献   
105.
Plagioclase feldspar is one of the most common rock‐forming minerals on the surfaces of the Earth and other terrestrial planetary bodies, where it has been exposed to the ubiquitous process of hypervelocity impact. However, the response of plagioclase to shock metamorphism remains poorly understood. In particular, constraining the initiation and progression of shock‐induced amorphization in plagioclase (i.e., conversion to diaplectic glass) would improve our knowledge of how shock progressively deforms plagioclase. In turn, this information would enable plagioclase to be used to evaluate the shock stage of meteorites and terrestrial impactites, whenever they lack traditionally used shock indicator minerals, such as olivine and quartz. Here, we report on an electron backscatter diffraction (EBSD) study of shocked plagioclase grains in a metagranite shatter cone from the central uplift of the Manicouagan impact structure, Canada. Our study suggests that, in plagioclase, shock amorphization is initially localized either within pre‐existing twins or along lamellae, with similar characteristics to planar deformation features (PDFs) but that resemble twins in their periodicity. These lamellae likely represent specific crystallographic planes that undergo preferential structural failure under shock conditions. The orientation of preexisting twin sets that are preferentially amorphized and that of amorphous lamellae is likely favorable with respect to scattering of the local shock wave and corresponds to the “weakest” orientation for a specific shock pressure value. This observation supports a universal formation mechanism for PDFs in silicate minerals.  相似文献   
106.
Quantifying the extent of soil erosion at a fine spatial resolution can be time consuming and costly; however, proximal remote sensing approaches to collect topographic data present an emerging alternative for quantifying soil volumes lost via erosion. Herein we compare terrestrial laser scanning (TLS), and both unmanned aerial vehicle (UAV) and ground photography (GP) structure‐from‐motion (SfM) derived topography. We compare the cost‐effectiveness and accuracy of both SfM techniques to TLS for erosion gully surveying in upland landscapes, treating TLS as a benchmark. Further, we quantify volumetric soil loss estimates from upland gullies using digital surface models derived by each technique and subtracted from an interpolated pre‐erosion surface. Soil loss estimates from UAV and GP SfM reconstructions were comparable to those from TLS, whereby the slopes of the relationship between all three techniques were not significantly different from 1:1 line. Only for the TLS to GP comparison was the intercept significantly different from zero, showing that GP is more capable of measuring the volumes of very small erosion features. In terms of cost‐effectiveness in data collection and processing time, both UAV and GP were comparable with the TLS on a per‐site basis (13.4 and 8.2 person‐hours versus 13.4 for TLS); however, GP was less suitable for surveying larger areas (127 person‐hours per ha?1 versus 4.5 for UAV and 3.9 for TLS). Annual repeat surveys using GP were capable of detecting mean vertical erosion change on peaty soils. These first published estimates of whole gully erosion rates (0.077 m a?1) suggest that combined erosion rates on gully floors and walls are around three times the value of previous estimates, which largely characterize wind and rainsplash erosion of gully walls. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
107.
The Winchcombe meteorite fell on February 28, 2021 and was the first recovered meteorite fall in the UK for 30 years, and the first UK carbonaceous chondrite. The meteorite was widely observed by meteor camera networks, doorbell cameras, and eyewitnesses, and 213.5 g (around 35% of the final recovered mass) was collected quickly—within 12 h—of its fall. It, therefore, represents an opportunity to study very pristine extra-terrestrial material and requires appropriate careful curation. The meteorite fell in a narrow (600 m across) strewn field ~8.5 km long and oriented approximately east–west, with the largest single fragment at the farthest (east) end in the town of Winchcombe, Gloucestershire. Of the total known mass of 602 g, around 525 g is curated at the Natural History Museum, London. A sample analysis plan was devised within a month of the fall to enable scientists in the UK and beyond to quickly access and analyze fresh material. The sample is stored long term in a nitrogen atmosphere glove box. Preliminary macroscopic and electron microscopic examinations show it to be a CM2 chondrite, and despite an early search, no fragile minerals, such as halite, sulfur, etc., were observed.  相似文献   
108.
Hillslopes turn precipitation into runoff and thus exert important controls on various Earth system processes. It remains difficult to collect reliable data necessary for understanding and modeling these Earth system processes in real catchments. To overcome this problem, controlled experiments are being conducted at the Landscape Evolution Observatory at Biosphere 2, The University of Arizona. Previous experiments have revealed differences in hydrological response between 2 landscapes within Landscape Evolution Observatory, even though both landscapes were designed to be identical. In an attempt to discover where the observed differences stem from, we use a fully 3‐dimensional hydrological model (CATchment HYdrology) to show the effect of soil water retention characteristics and saturated hydraulic conductivity on the hydrological response of these 2 hillslopes. We also show that soil water retention characteristics can be derived at hillslope scale from experimental observations of soil moisture and matric potential. It is found that differences in soil packing between the 2 landscapes may be responsible for the observed differences in hydrological response. This modeling study also suggests that soil water retention characteristics and saturated hydraulic conductivity have a profound effect on rainfall–runoff processes at hillslope scale and that parametrization of a single hillslope may be a promising step in modeling rainfall–runoff response in real catchments.  相似文献   
109.
Climate and land use changes have led to recent increases in fire size, severity, and/or frequency in many different geographic regions and ecozones. Most post-wildfire geomorphology studies focus on the impact of a single wildfire but changing wildfire regimes underscore the need to quantify the effects of repeated disturbance by wildfire and the subsequent impacts on system resilience. Here, we examine the impact of two successive wildfires on soil hydraulic properties and debris flow hazards. The 2004 Nuttall-Gibson Complex and the 2017 Frye Fire affected large portions of the Pinaleño Mountains in southern Arizona, creating a mosaic of burn severity patterns that allowed us to quantify differences in wildfire-induced hydrologic changes as a function of burn severity and recent fire history (i.e. burned in only the Frye Fire or burned in both fires). Field observations after the 2017 Frye Fire indicated debris flow activity in areas burned predominantly at low severity. Many of these areas, however, were also affected by the 2004 Nuttall-Gibson Complex, suggesting that the relatively short recovery time between the two wildfires may have played a role in the geomorphic response to the most recent wildfire. Field measurements of soil hydraulic properties suggest that soils burned at moderate severity in 2004 and low severity in 2017 have a lower infiltration capacity relative to those that remained unburned in 2004 and burned at low severity in 2017. Simulations of runoff demonstrate that measured differences in infiltration capacity between once- and twice-burned soils are sufficient in some cases to influence the rainfall intensities needed to initiate runoff generated debris flows. Results quantify the impact of wildfire history and burn severity on runoff and debris flow activity in a landscape affected by successive wildfires and provide insight into how the resilience of geomorphic systems may be affected by successive wildfires. © 2019 John Wiley & Sons, Ltd.  相似文献   
110.
The CM carbonaceous chondrites provide unique insights into the composition of the protoplanetary disk, and the accretion and geological history of their parent C‐complex asteroid(s). Of the hundreds of CMs that are available for study, the majority are finds and so may have been compromised by terrestrial weathering. Nineteen falls have been recovered between 1838 and 2020, and there is a hint of two temporal clusters: 1930–1942 and 2009–2020. Falls are considered preferable to finds to study because they should be near pristine, and here this assumption is tested by investigating their susceptibility to alteration before recovery and during curation. CMs falling on the land surface are prone to contamination by organic compounds from soil and vegetation. Where exposed to liquid water prior to collection, minerals including oldhamite can be dissolved and most fluid mobile elements leached. Within days of recovery, CMs adsorb water from the atmosphere and are commonly contaminated by airborne hydrocarbons. Interaction with atmospheric water and oxygen during curation over year to decadal timescales can produce Fe‐oxyhydroxides from Fe,Ni metal and gypsum from indigenous gypsum and oldhamite. Relationships between the petrologic (sub)types of pre‐1970 falls and their terrestrial age could be due to extensive but cryptic alteration during curation, but are more likely a sampling bias. The terrestrial history of a CM fall, including circumstances of its collection and conditions of its curation, must be taken into account before it is used to infer processes on C‐complex parent bodies such as Ryugu and Bennu.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号