首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4809篇
  免费   152篇
  国内免费   60篇
测绘学   151篇
大气科学   440篇
地球物理   1098篇
地质学   1777篇
海洋学   437篇
天文学   830篇
综合类   12篇
自然地理   276篇
  2022年   44篇
  2021年   65篇
  2020年   65篇
  2019年   63篇
  2018年   157篇
  2017年   157篇
  2016年   183篇
  2015年   122篇
  2014年   165篇
  2013年   230篇
  2012年   199篇
  2011年   291篇
  2010年   215篇
  2009年   295篇
  2008年   250篇
  2007年   199篇
  2006年   226篇
  2005年   224篇
  2004年   310篇
  2003年   227篇
  2002年   161篇
  2001年   127篇
  2000年   104篇
  1999年   87篇
  1998年   98篇
  1997年   61篇
  1996年   38篇
  1995年   43篇
  1994年   41篇
  1993年   38篇
  1992年   43篇
  1991年   23篇
  1990年   36篇
  1989年   16篇
  1988年   18篇
  1987年   22篇
  1986年   20篇
  1985年   17篇
  1984年   22篇
  1983年   19篇
  1982年   15篇
  1981年   23篇
  1980年   11篇
  1978年   22篇
  1977年   21篇
  1976年   16篇
  1975年   18篇
  1974年   18篇
  1973年   15篇
  1971年   12篇
排序方式: 共有5021条查询结果,搜索用时 140 毫秒
991.
Panarea, characterized by gas unrest in 2002–2003, is the volcanic island with the least constrained structure in the eastern-central Aeolian Arc (Italy). Based on structural measurements, we define here its deformation pattern relative to the Arc. The main deformations are subvertical extension fractures (63% of data), normal faults (25%) and dikes (12%). The mean orientation of the extension fractures and faults is N38°E, with a mean opening direction of N135° ± 8°, implying extension with a moderate component of dextral shear. These data, matched with those available for Stromboli volcano (pure opening) and Vulcano, Lipari and Salina volcanoes (predominant dextral motions) along the eastern-central Arc, suggest a progressive westward rotation of the extension direction and an increase in the dextral shear. The dextral shear turns into compression in the western arc. The recent unrest at Panarea, coeval to that of nearby Stromboli, may also be explained by the structural context, as both volcanoes lie along the portion of the Arc subject to extension.  相似文献   
992.
993.
The coastal environment shows a wide range of bed patterns, for which sandwaves and sandbanks are among the most common. Less known in this context is the high benthic diversity in the coastal environment, which gives rise to the question to what extend the benthos interacts with the shape of the seabed. This paper reviews field and flume experiments on bio-geomorphological influences between benthos and sediment and tests the hypothesis that both the occurrence and the dimensions of sandwaves are dependent on the benthic diversity in the North Sea. Mathematical inclusions to account for biological activity in idealized models reveal that biota is able to influence the wavelength of sandwaves significantly, compared to the default case. More importantly, the models indicate that biota is able to induce bed patterns under conditions when the physical parameters suggest a stable flat bed and vice versa. Present model explorations indicate that future research should focus on the parameterization of subtidal biological activity on sediment dynamics and thereby on seabed patterns. Such knowledge will enable process-based modeling of the spatial and temporal variation in biological activity on seabed morphodynamics and validate the proposed modeling approach with field measurements.  相似文献   
994.
995.
996.
We model multivariate hydrological risks in the case that at least one of the variables is extreme. Recently, Heffernan JE, Tawn JA (2004) A conditional approach for multivariate extremes. J R Stat Soc B 66(3):497–546 (thereafter called HT04) proposed a conditional multivariate extreme value model which applies to regions where not all variables are extreme and simultaneously identifies the type of extremal dependence, including negative dependence. In this paper we apply this modeling strategy and provide an application to multivariate observations of five rivers in two clearly distinct regions of Puerto Rico Island and for two different seasons each. This effective dimensionality of ten-dimensions cannot be handled by the traditional models of multivariate extremes. The resulting fitted model, following HT04 model and strategies of estimation, is able to make long term estimation of extremes, conditional than other rivers are extreme or not. The model shows considerable flexibility to address the natural questions that arise in multivariate extreme value assessments. In the Puerto Rico 5 rivers application, the model clearly puts together two regions one of two rivers and another of three rivers, which show strong relationships in the rainy season. This corresponds with the geographical distribution of the rivers.
Beatriz Vaz de Melo MendesEmail:
  相似文献   
997.
Shear effects are often a very important issue on the seismic behaviour of piers, particularly for hollow section bridge piers. In fact, for this type of piers the cyclic response is similar to that of a structural wall in which both the transverse reinforcement ratio and the detailing can play an important role on its performance, even likely to be determinant in terms of the failure mechanism. On the other hand, codes and design guidelines are usually very conservative concerning shear capacity in order to avoid any shear failure mechanism likely to trigger well known catastrophic consequences. Therefore, research studies on this topic are still needed for a better understanding of pier cyclic shear response and also for improvement of the performance under seismic actions. Pursuing this general objective, this paper partially reports on an experimental/numerical campaign carried out on 1:4 reduced scale bridge piers in order to highlight and investigate shear-type problems. Within the scope of this paper, two specimens types were selected having equal rectangular hollow section (900 × 450 mm2, 75 mm thick) but different transverse reinforcement detailing, namely one with a single stirrup per wall (representative of typical bridge construction without seismic design requirements) and another with multiple stirrups, according to Eurocode 8 provisions. Numerical simulations of the experimental results were also conducted aiming at contributing for complete and consistent interpretations of experimental results. Detailed modelling was performed allowing for realistic simulations of the non linear behaviour, particularly suitable when a significant shear component is involved. Therefore, the numerical strategy was based on a detailed 3D FEM discretization using a two-scalar variable damage model for the concrete constitutive law and a suitable cyclic behaviour law for steel bars represented by truss elements. Results have shown that shear deformation and failure modes are well simulated, while providing detailed insight concerning concrete damage pattern and distribution of yielding on the transverse and longitudinal reinforcement.  相似文献   
998.
In this article, we describe the dynamics of pH, O2 and H2S in the top 5–10 cm of an intertidal flat consisting of permeable sand. These dynamics were measured at the low water line and higher up the flat and during several seasons. Together with pore water nutrient data, the dynamics confirm that two types of transport act as driving forces for the cycling of elements (Billerbeck et al. 2006b): Fast surface dynamics of pore water chemistry occur only during inundation. Thus, they must be driven by hydraulics (tidal and wave action) and are highly dependent on weather conditions. This was demonstrated clearly by quick variation in oxygen penetration depth: Seeps are active at low tide only, indicating that the pore water flow in them is driven by a pressure head developing at low tide. The seeps are fed by slow transport of pore water over long distances in the deeper sediment. In the seeps, high concentrations of degradation products such as nutrients and sulphide were found, showing them to be the outlets of deep-seated degradation processes. The degradation products appear toxic for bioturbating/bioirrigating organisms, as a consequence of which, these were absent in the wider seep areas. These two mechanisms driving advection determine oxygen dynamics in these flats, whereas bioirrigation plays a minor role. The deep circulation causes a characteristic distribution of strongly reduced pore water near the low water line and rather more oxidised sediments in the centre of the flats. The two combined transport phenomena determine the fluxes of solutes and gases from the sediment to the surface water and in this way create specific niches for various types of microorganisms.  相似文献   
999.
The response of the Sao Paulo Continental Shelf (SPCS) to synoptic wind forcing has been analyzed. Two different methods are used for this purpose, one based on hydrographic data, bottom topography, and geographical characteristics, and a second on analyzing currentmeter data directly and using empirical orthogonal functions. Both methods show similar results for an essentially barotropic shelf. The SPCS response in the subinertial frequency band appears to be trapped on the continental shelf. Numerical experiments have also been carried out showing results that qualitatively agree with the observations, including the velocity component parallel to the coastline. Supported by CAPES.  相似文献   
1000.
The ecological tidal model simulates the cycling of carbon, nitrogen, phosphate, and silicate and describes the tidal, diurnal, and annual dynamics of the back barrier area of the island Spiekeroog in the German Bight. The region is characterized by strong tidal currents and extensive tidal flats. It is strongly influenced by the conditions in the southern part of the German Bight. This model study investigates the dependence of the model behavior on the boundary conditions and the forcing. The effect of short- and long-term sea level rise on nutrient and plankton dynamics is analyzed. As the model is set up as semi-Lagrangian with only a coarse approximation of the hydrodynamics, the seasonal and intratidal variability in the biogeochemical cycling can only be reproduced qualitatively. By varying the boundary conditions, the intrinsic dynamics of the back barrier area can be separated from boundary condition effects. This study shows that any agreement between model results and field data cannot be expected without correct boundary conditions. The seasonal variability is of major importance, while higher-frequency variability only plays a minor role.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号