首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1354篇
  免费   63篇
  国内免费   11篇
测绘学   53篇
大气科学   87篇
地球物理   375篇
地质学   546篇
海洋学   126篇
天文学   155篇
综合类   6篇
自然地理   80篇
  2023年   9篇
  2022年   9篇
  2021年   25篇
  2020年   25篇
  2019年   31篇
  2018年   65篇
  2017年   60篇
  2016年   70篇
  2015年   42篇
  2014年   76篇
  2013年   88篇
  2012年   61篇
  2011年   88篇
  2010年   67篇
  2009年   102篇
  2008年   69篇
  2007年   59篇
  2006年   47篇
  2005年   58篇
  2004年   38篇
  2003年   38篇
  2002年   36篇
  2001年   26篇
  2000年   22篇
  1999年   14篇
  1998年   18篇
  1997年   15篇
  1996年   9篇
  1995年   12篇
  1994年   10篇
  1993年   13篇
  1992年   4篇
  1991年   4篇
  1990年   10篇
  1989年   10篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   8篇
  1984年   9篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1979年   4篇
  1975年   3篇
  1957年   3篇
  1956年   4篇
  1955年   3篇
  1953年   3篇
  1950年   3篇
排序方式: 共有1428条查询结果,搜索用时 31 毫秒
71.
72.
International Journal of Earth Sciences - The geometry and emplacement of the ~ 96 km2, Late Cretaceous Sintra Igneous complex (SIC, ca. 80 Ma) into the West Iberian passive...  相似文献   
73.
Intensive irrigated agriculture substantially modifies the hydrological cycle and often has major environmental impacts. The article focuses upon a specific concern—the tendency for progressive long-term increases in the salinity of groundwater recharge derived from irrigated permeable soils and replenishment of unconfined aquifers in more arid regions. This process has received only scant attention in the water-resource literature and has not been considered by agricultural science. This work makes an original contribution by analysing, from scientific principles, how the salinisation of groundwater recharge arises and identifies the factors affecting its severity. If not proactively managed, the process eventually will impact irrigation waterwell salinity, the productivity of agriculture itself, and can even lead to land abandonment. The types of management measure required for mitigation are discussed through three detailed case histories of areas with high-value groundwater-irrigated agriculture (in Spain, Argentina and Pakistan), which provide a long-term perspective on the evolution of the problem over various decades.  相似文献   
74.
Given its geological and climatic conditions and its rugged orography, Asturias is one of the most landslide prone areas in the North of Spain. Most of the landslides occur during intense rainfall episodes. Thus, precipitation is considered the main triggering factor in the study area, reaching average annual values of 960 mm. Two main precipitation patterns are frequent: (i) long-lasting periods of moderate rainfall during autumn and winter and (ii) heavy short rainfall episodes during spring and early summer. In the present work, soil moisture conditions in the locations of 84 landslides are analysed during two rainfall episodes, which represent the most common precipitation patterns: October–November 2008 and June 2010. Empirical data allowed the definition of available water capacity percentages of 99–100% as critical soil moisture conditions for the landslide triggering. Intensity-duration rainfall thresholds were calculated for each episode, considering the periods with sustained high soil moisture levels before the occurrence of each analysed landslide event. For this purpose, data from daily water balance models and weather stations were used. An inverse relationship between the duration of the precipitation and its intensity, consistent with published intensity-duration thresholds, was observed, showing relevant seasonal differences.  相似文献   
75.
In this work, we consider a new model for flow in a multiporosity shale gas reservoir constructed within the framework of an upscaling procedure where hydraulic fractures are treated as (\(n-1\)) interfaces (\(n=2,3\)). Within this framework, the hydrodynamics is governed by a new pressure equation in the shale matrix which is treated as a homogenized porous medium composed of organic matter (kerogen aggregates with nanopores) and inorganic impermeable solid (clay, calcite, quartz) separated from each other by a network of interparticle pores of micrometer size. The solution of the pressure equation is strongly influenced by the constitutive response of the retardation parameter and effective hydraulic conductivity where the former incorporates gas adsorption/desorption in the nanopores of the kerogen. By focusing our analyses on this nonlinear diffusion equation in the domain occupied by the shale matrix, an optimization strategy seated on the adjoint sensitivity method is developed to minimize a cost functional related to gas production and net present value in a single hydraulic fracture. The gradient of the objective functional computed with the adjoint formulation is explored to update the controlled pressure drop aiming to optimize production in a given window of time. The combination of the direct approach and gradient-based optimization using the adjoint formulation leads to the construction of optimal production scenarios under controlled pressure decline in the well. Numerical simulations illustrate the potential of the methodology proposed herein in optimizing gas production.  相似文献   
76.
An unsupervised machine-learning workflow is proposed for estimating fractional landscape soils and vegetation components from remotely sensed hyperspectral imagery. The workflow is applied to EO-1 Hyperion satellite imagery collected near Ibirací, Minas Gerais, Brazil. The proposed workflow includes subset feature selection, learning, and estimation algorithms. Network training with landscape feature class realizations provide a hypersurface from which to estimate mixtures of soil (e.g. 0.5 exceedance for pixels: 75% clay-rich Nitisols, 15% iron-rich Latosols, and 1% quartz-rich Arenosols) and vegetation (e.g. 0.5 exceedance for pixels: 4% Aspen-like trees, 7% Blackberry-like trees, 0% live grass, and 2% dead grass). The process correctly maps forests and iron-rich Latosols as being coincident with existing drainages, and correctly classifies the clay-rich Nitisols and grasses on the intervening hills. These classifications are independently corroborated visually (Google Earth) and quantitatively (random soil samples and crossplots of field spectra). Some mapping challenges are the underestimation of forest fractions and overestimation of soil fractions where steep valley shadows exist, and the under representation of classified grass in some dry areas of the Hyperion image. These preliminary results provide impetus for future hyperspectral studies involving airborne and satellite sensors with higher signal-to-noise and smaller footprints.  相似文献   
77.

The site characterization of unsaturated soils is well stablished based on laboratory tests, which are expensive and time-consuming. In-situ testing methods, such as the flat dilatometer test (DMT), are an alternative to the traditional approach of drilling, sampling, and laboratory testing. The literature on DMT interpretation is well established on saturated and well-behaved soils. Only few studies deal with DMT interpretation in unusual soils, and little is known about the influence of soil suction on this test. This paper presents and discusses the influence of soil suction on four DMT campaigns carried out in an unsaturated tropical soil site, also incorporating the soil suction influence on the DMT interpretation. Soil suction was estimated by the soil–water characteristic curve (SWCC) and water content profiles. The water content profiles range from 11.3 to 19.7% which corresponds to a suction range estimated by SWCCs mostly between 6 and 200 kPa. Soil suction significantly influenced DMT data up to 5 m depth at the studied site (the unsaturated active zone) increasing the intermediate DMT parameters. The average horizontal stress index (KD) was equal to about 1.7 and the average dilatometer modulus (ED) was about 4.7 MPa in the active zone and practically doubled their values due to in situ soil suction. The estimated peak friction angle (?) was 20–30% higher due to soil suction influence on DMT assuming the soil behaves as a sand like material. Soil suction must be considered to assess the behavior of the investigated soil by the DMT. The suction influence should be incorporated in the effective stress and this approach considerably improved the site characterization of the studied site.

  相似文献   
78.
Store Mosse (the ‘Great Bog’ in Swedish) is one of the most extensive bog complexes in southern Sweden (~77 km2), where pioneering palaeoenvironmental research has been carried out since the early 20th century. This includes, for example, vegetation changes, carbon and nitrogen dynamics, peat decomposition, atmospheric metal pollution, mineral dust deposition, dendrochronology, and tephrochronology. Even though organic matter (OM) represents the bulk of the peat mass and its compositional change has the potential to provide crucial ecological information on bog responses to environmental factors, peat OM molecular composition has not been addressed in detail. Here, a 568-cm-deep peat sequence was studied at high resolution, by attenuated reflectance Fourier-transform infrared spectroscopy (FTIR-ATR) in the mid-infrared region (4000–400 cm–1). Principal components analysis was performed on selected absorbances and change-point modelling was applied to the records to determine the timing of changes. Four components accounted for peat composition: (i) depletion/accumulation of labile (i.e. carbohydrates) and recalcitrant (i.e. lignin and other aromatics, aliphatics, organic acids and some N compounds) compounds, due to peat decomposition; (ii) variations in N compounds and carbohydrates; (iii) residual variation of lignin and organic acids; and (iv) residual variation of aliphatic structures. Peat decomposition showed two main patterns: a long-term trend highly correlated to peat age (r = 0.87), and a short-term trend, which showed five main phases of increased decomposition (at ~8.4–8.1, ~7.0–5.6, ~3.5–3.1, ~2.7–2.1 and ~1.6–1.3 ka) – mostly corresponding to drier climate and its effect on bog hydrology. The high peat accumulation event (~5.6–3.9 ka), described in earlier studies, is characterized by the lowest degree of peat decomposition of the whole record. Given that FTIR-ATR is a quick, non-destructive, cost-effective technique, our results indicate that it can be applied in a systematic way (including multicore studies) to peat research and provide relevant information on the evolution of peatlands.  相似文献   
79.

The volcanic rocks of the Colíder and Roosevelt formations are extensively exposed in the south-central portion of the Amazonian Craton where effusive and pyroclastic rocks have been mapped. Both units, topped by chemical sediments and oceanic facies as rhyolite and andesite lavas, rhyodacite, and porphyritic dacite, with frequent intercalations of pyroclastic and epiclastic deposits. Whole-rock geochemistry for 55 samples of rhyolitic to andesitic composition suggests the involvement of fertile mantle-derived components with E-MORB to OIB compositions. The analyzed rocks display calc-alkaline to shoshonitic affinity consistent with generation related to an active continental margin. The whole-rock Sm-Nd isotope data from selected felsic volcanic rocks of the Colíder and Roosevelt formations yield negative initial εNd values between –3 and –9, indicating the predominantly crustal nature of the parental magmas with early Archean to late Paleoproterozoic (ca. 2.5–2.0 Ga) depleted mantle model ages.

  相似文献   
80.
A new compilation of data from 436 drill cores using decompaction and backstripping techniques was used to reconstruct the basin filling history from the Pliocene until the present day in the Palma, Inca and Sa Pobla Basins on the island of Mallorca (Spain). Calcareous rocks dominate the source area and provide a limited amount of clastic input to the basins that has resulted in an average accumulation rate of between 5 and 20 m/Ma during the last 5.3 Ma. Carbonate sediment production dominated the basin filling history during early‐mid Pliocene, but during the Quaternary, the sedimentation processes in the Palma Basin were probably enhanced by an evolution in the drainage network that increased the sediment supply and the accumulated thickness caused by stream capture. However, the maximum sedimentation rate filling the depocentres of the three basins has been decreasing since the Pliocene, showing that not only the catchment transport efficiency but also the relative sea level have been controlling the sediment accumulation in these carbonate basins. The isopach cross‐sections support the idea that a palaeorelief was generated during the Messinian sea level drop and that heterogeneities were filled in from the Pliocene to the Quaternary. We conclude that the central basins of Mallorca were filled heterogeneously due to tectonic and geomorphic processes that controlled sediment transport and production, resulting in different average sedimentation thicknesses that decreased since the Pliocene as the accommodation space became filled and the relative sea level dropped.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号